新型维克多病毒 FaVV1 和 FaVV2 的外壳蛋白抑制镰刀菌头疫病病原体的有性生殖和病毒力

Viruses Pub Date : 2024-09-06 DOI:10.3390/v16091424
Shulin Cao, Xiaoyue Yang, Lele Xia, Xing Zhang, Haiyan Sun, Yuanyu Deng, Yan Shu, Aixiang Zhang, Huaigu Chen, Wei Li
{"title":"新型维克多病毒 FaVV1 和 FaVV2 的外壳蛋白抑制镰刀菌头疫病病原体的有性生殖和病毒力","authors":"Shulin Cao, Xiaoyue Yang, Lele Xia, Xing Zhang, Haiyan Sun, Yuanyu Deng, Yan Shu, Aixiang Zhang, Huaigu Chen, Wei Li","doi":"10.3390/v16091424","DOIUrl":null,"url":null,"abstract":"Fusarium head blight (FHB), a disease inflicted by Fusarium graminearum and F. asiaticum, poses a growing threat to wheat in China, particularly in the face of climate change and evolving agricultural practices. This study unveiled the discovery of the victorivirus FgVV2 from the F. asiaticum strain F16176 and comprehensively characterized the function of the two victoriviruses FaVV1 and FaVV2 in virulence. Through comparative analysis with a virus-free strain, we established that these mycoviruses markedly repress the sexual reproduction and pathogenicity of their fungal hosts. Furthermore, we synthesized the coat protein (CP) genes CP1 from FaVV1 and CP2 from FaVV2, which were fused with the green fluorescent protein (GFP) gene and successfully expressed in Fusarium strains in wild-type isolates of F. asiaticum and F. graminearum. Similar to virus-infected strains, the transformed strains expressing CPs showed a significant decrease in perithecia formation and pathogenicity. Notably, CP2 exhibited a stronger inhibitory effect than CP1, yet the suppression of sexual reproduction in F. graminearum was less pronounced than that in F. asiaticum. Additionally, the pathogenicity of the F. asiaticum and F. graminearum strains expressing CP1 or CP2 was substantially diminished against wheat heads. The GFP-tagged CP1 and CP2 revealed distinct cellular localization patterns, suggesting various mechanisms of interaction with the host. The findings of this study provide a significant research foundation for the study of the interaction mechanisms between FaVV1 and FaVV2 with their hosts, as well as for the exploration and utilization of fungal viral resources.","PeriodicalId":501326,"journal":{"name":"Viruses","volume":"18 2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coat Proteins of the Novel Victoriviruses FaVV1 and FaVV2 Suppress Sexual Reproduction and Virulence in the Pathogen of Fusarium Head Blight\",\"authors\":\"Shulin Cao, Xiaoyue Yang, Lele Xia, Xing Zhang, Haiyan Sun, Yuanyu Deng, Yan Shu, Aixiang Zhang, Huaigu Chen, Wei Li\",\"doi\":\"10.3390/v16091424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fusarium head blight (FHB), a disease inflicted by Fusarium graminearum and F. asiaticum, poses a growing threat to wheat in China, particularly in the face of climate change and evolving agricultural practices. This study unveiled the discovery of the victorivirus FgVV2 from the F. asiaticum strain F16176 and comprehensively characterized the function of the two victoriviruses FaVV1 and FaVV2 in virulence. Through comparative analysis with a virus-free strain, we established that these mycoviruses markedly repress the sexual reproduction and pathogenicity of their fungal hosts. Furthermore, we synthesized the coat protein (CP) genes CP1 from FaVV1 and CP2 from FaVV2, which were fused with the green fluorescent protein (GFP) gene and successfully expressed in Fusarium strains in wild-type isolates of F. asiaticum and F. graminearum. Similar to virus-infected strains, the transformed strains expressing CPs showed a significant decrease in perithecia formation and pathogenicity. Notably, CP2 exhibited a stronger inhibitory effect than CP1, yet the suppression of sexual reproduction in F. graminearum was less pronounced than that in F. asiaticum. Additionally, the pathogenicity of the F. asiaticum and F. graminearum strains expressing CP1 or CP2 was substantially diminished against wheat heads. The GFP-tagged CP1 and CP2 revealed distinct cellular localization patterns, suggesting various mechanisms of interaction with the host. The findings of this study provide a significant research foundation for the study of the interaction mechanisms between FaVV1 and FaVV2 with their hosts, as well as for the exploration and utilization of fungal viral resources.\",\"PeriodicalId\":501326,\"journal\":{\"name\":\"Viruses\",\"volume\":\"18 2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viruses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/v16091424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/v16091424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由禾谷镰刀菌(Fusarium graminearum)和亚洲镰刀菌(F. asiaticum)引起的小麦头枯病(Fusarium head blight,FHB)对中国小麦的威胁日益严重,尤其是在气候变化和农业生产方式不断变化的情况下。本研究从F. asiaticum菌株F16176中发现了矢车菊病毒FgVV2,并全面描述了两种矢车菊病毒FaVV1和FaVV2的毒力功能。通过与无病毒菌株的比较分析,我们确定这些真菌病毒明显抑制了其真菌宿主的有性生殖和致病性。此外,我们合成了 FaVV1 和 FaVV2 的衣壳蛋白(CP)基因 CP1 和 CP2,并将其与绿色荧光蛋白(GFP)基因融合,成功地在镰刀菌野生型分离株中表达。与受病毒感染的菌株相似,表达 CPs 的转化菌株的包囊形成和致病性显著降低。值得注意的是,CP2 比 CP1 表现出更强的抑制作用,但对禾谷镰孢有性生殖的抑制作用不如对禾谷镰孢的抑制作用明显。此外,表达 CP1 或 CP2 的 F. asiaticum 和 F. graminearum 菌株对小麦头的致病性大大降低。GFP 标记的 CP1 和 CP2 揭示了不同的细胞定位模式,表明它们与宿主之间存在不同的相互作用机制。该研究结果为研究 FaVV1 和 FaVV2 与宿主的相互作用机制以及探索和利用真菌病毒资源提供了重要的研究基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coat Proteins of the Novel Victoriviruses FaVV1 and FaVV2 Suppress Sexual Reproduction and Virulence in the Pathogen of Fusarium Head Blight
Fusarium head blight (FHB), a disease inflicted by Fusarium graminearum and F. asiaticum, poses a growing threat to wheat in China, particularly in the face of climate change and evolving agricultural practices. This study unveiled the discovery of the victorivirus FgVV2 from the F. asiaticum strain F16176 and comprehensively characterized the function of the two victoriviruses FaVV1 and FaVV2 in virulence. Through comparative analysis with a virus-free strain, we established that these mycoviruses markedly repress the sexual reproduction and pathogenicity of their fungal hosts. Furthermore, we synthesized the coat protein (CP) genes CP1 from FaVV1 and CP2 from FaVV2, which were fused with the green fluorescent protein (GFP) gene and successfully expressed in Fusarium strains in wild-type isolates of F. asiaticum and F. graminearum. Similar to virus-infected strains, the transformed strains expressing CPs showed a significant decrease in perithecia formation and pathogenicity. Notably, CP2 exhibited a stronger inhibitory effect than CP1, yet the suppression of sexual reproduction in F. graminearum was less pronounced than that in F. asiaticum. Additionally, the pathogenicity of the F. asiaticum and F. graminearum strains expressing CP1 or CP2 was substantially diminished against wheat heads. The GFP-tagged CP1 and CP2 revealed distinct cellular localization patterns, suggesting various mechanisms of interaction with the host. The findings of this study provide a significant research foundation for the study of the interaction mechanisms between FaVV1 and FaVV2 with their hosts, as well as for the exploration and utilization of fungal viral resources.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信