Muchen Zhang, Xinyan Xu, Luqiong Lv, Jinyan Luo, Temoor Ahmed, Waleed A. A. Alsakkaf, Hayssam M. Ali, Ji’an Bi, Chengqi Yan, Chunyan Gu, Linfei Shou, Bin Li
{"title":"ZP3 噬菌体及其对黄单胞菌(Xanthomonas oryzae pv. oryzae)具有抗菌潜力的内溶素 LysZP 的基因组特征描述","authors":"Muchen Zhang, Xinyan Xu, Luqiong Lv, Jinyan Luo, Temoor Ahmed, Waleed A. A. Alsakkaf, Hayssam M. Ali, Ji’an Bi, Chengqi Yan, Chunyan Gu, Linfei Shou, Bin Li","doi":"10.3390/v16091450","DOIUrl":null,"url":null,"abstract":"Xanthomonas oryzae pv. oryzae (Xoo) is a significant bacterial pathogen responsible for outbreaks of bacterial leaf blight in rice, posing a major threat to rice cultivation worldwide. Effective management of this pathogen is crucial for ensuring rice yield and food security. In this study, we identified and characterized a novel Xoo phage, ZP3, isolated from diseased rice leaves in Zhejiang, China, which may offer new insights into biocontrol strategies against Xoo and contribute to the development of innovative approaches to combat bacterial leaf blight. Transmission electron microscopy indicated that ZP3 had a short, non-contractile tail. Genome sequencing and bioinformatic analysis showed that ZP3 had a double-stranded DNA genome with a length of 44,713 bp, a G + C content of 52.2%, and 59 predicted genes, which was similar to other OP1-type Xoo phages belonging to the genus Xipdecavirus. ZP3’s endolysin LysZP was further studied for its bacteriolytic action, and the N-terminal transmembrane domain of LysZP is suggested to be a signal–arrest–release sequence that mediates the translocation of LysZP to the periplasm. Our study contributes to the understanding of phage–Xoo interactions and suggests that phage ZP3 and its endolysin LysZP could be developed into biocontrol agents against this phytopathogen.","PeriodicalId":501326,"journal":{"name":"Viruses","volume":"175 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic Characterization of Phage ZP3 and Its Endolysin LysZP with Antimicrobial Potential against Xanthomonas oryzae pv. oryzae\",\"authors\":\"Muchen Zhang, Xinyan Xu, Luqiong Lv, Jinyan Luo, Temoor Ahmed, Waleed A. A. Alsakkaf, Hayssam M. Ali, Ji’an Bi, Chengqi Yan, Chunyan Gu, Linfei Shou, Bin Li\",\"doi\":\"10.3390/v16091450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Xanthomonas oryzae pv. oryzae (Xoo) is a significant bacterial pathogen responsible for outbreaks of bacterial leaf blight in rice, posing a major threat to rice cultivation worldwide. Effective management of this pathogen is crucial for ensuring rice yield and food security. In this study, we identified and characterized a novel Xoo phage, ZP3, isolated from diseased rice leaves in Zhejiang, China, which may offer new insights into biocontrol strategies against Xoo and contribute to the development of innovative approaches to combat bacterial leaf blight. Transmission electron microscopy indicated that ZP3 had a short, non-contractile tail. Genome sequencing and bioinformatic analysis showed that ZP3 had a double-stranded DNA genome with a length of 44,713 bp, a G + C content of 52.2%, and 59 predicted genes, which was similar to other OP1-type Xoo phages belonging to the genus Xipdecavirus. ZP3’s endolysin LysZP was further studied for its bacteriolytic action, and the N-terminal transmembrane domain of LysZP is suggested to be a signal–arrest–release sequence that mediates the translocation of LysZP to the periplasm. Our study contributes to the understanding of phage–Xoo interactions and suggests that phage ZP3 and its endolysin LysZP could be developed into biocontrol agents against this phytopathogen.\",\"PeriodicalId\":501326,\"journal\":{\"name\":\"Viruses\",\"volume\":\"175 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viruses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/v16091450\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/v16091450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Genomic Characterization of Phage ZP3 and Its Endolysin LysZP with Antimicrobial Potential against Xanthomonas oryzae pv. oryzae
Xanthomonas oryzae pv. oryzae (Xoo) is a significant bacterial pathogen responsible for outbreaks of bacterial leaf blight in rice, posing a major threat to rice cultivation worldwide. Effective management of this pathogen is crucial for ensuring rice yield and food security. In this study, we identified and characterized a novel Xoo phage, ZP3, isolated from diseased rice leaves in Zhejiang, China, which may offer new insights into biocontrol strategies against Xoo and contribute to the development of innovative approaches to combat bacterial leaf blight. Transmission electron microscopy indicated that ZP3 had a short, non-contractile tail. Genome sequencing and bioinformatic analysis showed that ZP3 had a double-stranded DNA genome with a length of 44,713 bp, a G + C content of 52.2%, and 59 predicted genes, which was similar to other OP1-type Xoo phages belonging to the genus Xipdecavirus. ZP3’s endolysin LysZP was further studied for its bacteriolytic action, and the N-terminal transmembrane domain of LysZP is suggested to be a signal–arrest–release sequence that mediates the translocation of LysZP to the periplasm. Our study contributes to the understanding of phage–Xoo interactions and suggests that phage ZP3 and its endolysin LysZP could be developed into biocontrol agents against this phytopathogen.