单层铍中不寻常的声子热传输机制

Sapta Sindhu Paul Chowdhury, Santosh Mogurampelly
{"title":"单层铍中不寻常的声子热传输机制","authors":"Sapta Sindhu Paul Chowdhury, Santosh Mogurampelly","doi":"arxiv-2409.05766","DOIUrl":null,"url":null,"abstract":"We compute the thermal conductivity of monolayer beryllene using the\nlinearized phonon Boltzmann transport equation with interatomic force constants\nobtained from \\textit{ab-initio} calculations. Monolayer beryllene exhibits an\nimpressive thermal conductivity of 270 W/m$\\cdot$K at room temperature,\nexceeding that of bulk beryllium by over 100%. Our study reveals a remarkable\ntemperature-dependent behavior: $\\kappa \\sim T^{-2}$ at low temperatures,\nattributed to higher normal phonon-phonon scatterings, and $\\kappa \\sim T^{-1}$\nat high temperatures, due to Umklapp phonon interactions. Mode-specific\nanalysis reveals that flexural phonons with longer lifetimes are the primary\ncontributors to thermal conductivity, accounting for approximately 80%. This\ndominance results from their lower scattering rates in the out-of-plane\ndirection due to a restricted phase space for scattering processes.\nAdditionally, our findings highlight suppressed Umklapp scattering and reduced\nphase space for flexural modes, providing a thorough understanding of the eased\nthermal conductivity in monolayer beryllene and its potential for advanced\nthermal management applications.","PeriodicalId":501137,"journal":{"name":"arXiv - PHYS - Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unusual Phonon Thermal Transport Mechanisms in Monolayer Beryllene\",\"authors\":\"Sapta Sindhu Paul Chowdhury, Santosh Mogurampelly\",\"doi\":\"arxiv-2409.05766\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the thermal conductivity of monolayer beryllene using the\\nlinearized phonon Boltzmann transport equation with interatomic force constants\\nobtained from \\\\textit{ab-initio} calculations. Monolayer beryllene exhibits an\\nimpressive thermal conductivity of 270 W/m$\\\\cdot$K at room temperature,\\nexceeding that of bulk beryllium by over 100%. Our study reveals a remarkable\\ntemperature-dependent behavior: $\\\\kappa \\\\sim T^{-2}$ at low temperatures,\\nattributed to higher normal phonon-phonon scatterings, and $\\\\kappa \\\\sim T^{-1}$\\nat high temperatures, due to Umklapp phonon interactions. Mode-specific\\nanalysis reveals that flexural phonons with longer lifetimes are the primary\\ncontributors to thermal conductivity, accounting for approximately 80%. This\\ndominance results from their lower scattering rates in the out-of-plane\\ndirection due to a restricted phase space for scattering processes.\\nAdditionally, our findings highlight suppressed Umklapp scattering and reduced\\nphase space for flexural modes, providing a thorough understanding of the eased\\nthermal conductivity in monolayer beryllene and its potential for advanced\\nthermal management applications.\",\"PeriodicalId\":501137,\"journal\":{\"name\":\"arXiv - PHYS - Mesoscale and Nanoscale Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mesoscale and Nanoscale Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05766\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用线性化声子玻尔兹曼输运方程和原子间作用力常数(textit{ab-initio}计算得出)计算了单层铍的热导率。单层铍在室温下表现出 270 W/m$\cdot$K 的压缩热导率,超过块体铍的热导率 100% 以上。我们的研究揭示了一种显著的随温度变化的行为:低温下的 $\kappa \sim T^{-2}$,归因于较高的正常声子-声子散射;高温下的 $\kappa \sim T^{-1}$,归因于 Umklapp 声子相互作用。对特定模式的分析表明,寿命较长的挠性声子是热导率的主要贡献者,约占 80%。此外,我们的研究结果还突显了被抑制的 Umklapp 散射以及挠曲模式的相空间缩小,这为我们深入了解单层铍的缓和热导率及其在先进热管理应用中的潜力提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unusual Phonon Thermal Transport Mechanisms in Monolayer Beryllene
We compute the thermal conductivity of monolayer beryllene using the linearized phonon Boltzmann transport equation with interatomic force constants obtained from \textit{ab-initio} calculations. Monolayer beryllene exhibits an impressive thermal conductivity of 270 W/m$\cdot$K at room temperature, exceeding that of bulk beryllium by over 100%. Our study reveals a remarkable temperature-dependent behavior: $\kappa \sim T^{-2}$ at low temperatures, attributed to higher normal phonon-phonon scatterings, and $\kappa \sim T^{-1}$ at high temperatures, due to Umklapp phonon interactions. Mode-specific analysis reveals that flexural phonons with longer lifetimes are the primary contributors to thermal conductivity, accounting for approximately 80%. This dominance results from their lower scattering rates in the out-of-plane direction due to a restricted phase space for scattering processes. Additionally, our findings highlight suppressed Umklapp scattering and reduced phase space for flexural modes, providing a thorough understanding of the eased thermal conductivity in monolayer beryllene and its potential for advanced thermal management applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信