自旋磁流体力学中的各向异性线性波和动量扩展的崩溃

Zhe Fang, Koichi Hattori, Jin Hu
{"title":"自旋磁流体力学中的各向异性线性波和动量扩展的崩溃","authors":"Zhe Fang, Koichi Hattori, Jin Hu","doi":"arxiv-2409.07096","DOIUrl":null,"url":null,"abstract":"We formulate spin magnetohydrodynamics (MHD) by including the magnetic-flux\nand total angular momentum conservation laws in the hydrodynamic framework. To\nspecify the local angular momentum conservation, we choose the totally\nantisymmetric spin current. The entropy-current analysis allows for ten\ndissipative first-order transport coefficients including anisotropic spin\nrelaxation rates and the conversion rate between a vorticity (shear) to a\nsymmetric stress (antisymmetric torque). By employing the linear-mode analysis,\nwe solve the first-order spin MHD equations to determine the dispersion\nrelations with the complete information of anisotropy retained. Our analytic\nsolutions indicate that the small-momentum expansion is spoiled by blow up of\nthe higher-order terms when the angle between the momentum and the magnetic\nfield approaches the right angle. This also reveals the existence of another\nexpansion parameter, and, in light of it, we provide solutions in an\nalternative series expression beyond the critical angle. We confirm that these\ntwo series expansions work well in the appropriate angle ranges as compared\nwith numerical results.","PeriodicalId":501573,"journal":{"name":"arXiv - PHYS - Nuclear Theory","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anisotropic linear waves and breakdown of the momentum expansion in spin magnetohydrodynamics\",\"authors\":\"Zhe Fang, Koichi Hattori, Jin Hu\",\"doi\":\"arxiv-2409.07096\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We formulate spin magnetohydrodynamics (MHD) by including the magnetic-flux\\nand total angular momentum conservation laws in the hydrodynamic framework. To\\nspecify the local angular momentum conservation, we choose the totally\\nantisymmetric spin current. The entropy-current analysis allows for ten\\ndissipative first-order transport coefficients including anisotropic spin\\nrelaxation rates and the conversion rate between a vorticity (shear) to a\\nsymmetric stress (antisymmetric torque). By employing the linear-mode analysis,\\nwe solve the first-order spin MHD equations to determine the dispersion\\nrelations with the complete information of anisotropy retained. Our analytic\\nsolutions indicate that the small-momentum expansion is spoiled by blow up of\\nthe higher-order terms when the angle between the momentum and the magnetic\\nfield approaches the right angle. This also reveals the existence of another\\nexpansion parameter, and, in light of it, we provide solutions in an\\nalternative series expression beyond the critical angle. We confirm that these\\ntwo series expansions work well in the appropriate angle ranges as compared\\nwith numerical results.\",\"PeriodicalId\":501573,\"journal\":{\"name\":\"arXiv - PHYS - Nuclear Theory\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Nuclear Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07096\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07096","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将磁通量和总角动量守恒定律纳入流体力学框架,从而提出了自旋磁流体力学(MHD)。为了明确局部角动量守恒,我们选择了完全对称的自旋电流。熵流分析允许倾向性一阶传输系数,包括各向异性的自旋松弛率和涡度(剪切力)到不对称应力(反不对称转矩)之间的转换率。通过采用线性模式分析,我们求解了一阶自旋 MHD 方程,从而在保留各向异性完整信息的情况下确定了频散关系。我们的分析结果表明,当动量与磁场之间的夹角接近直角时,高阶项的炸裂会破坏小动量展开。这也揭示了另一个膨胀参数的存在,鉴于此,我们提供了临界角以外的类比级数表达解。我们证实,与数值结果相比,这两个数列展开式在适当的角度范围内运行良好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Anisotropic linear waves and breakdown of the momentum expansion in spin magnetohydrodynamics
We formulate spin magnetohydrodynamics (MHD) by including the magnetic-flux and total angular momentum conservation laws in the hydrodynamic framework. To specify the local angular momentum conservation, we choose the totally antisymmetric spin current. The entropy-current analysis allows for ten dissipative first-order transport coefficients including anisotropic spin relaxation rates and the conversion rate between a vorticity (shear) to a symmetric stress (antisymmetric torque). By employing the linear-mode analysis, we solve the first-order spin MHD equations to determine the dispersion relations with the complete information of anisotropy retained. Our analytic solutions indicate that the small-momentum expansion is spoiled by blow up of the higher-order terms when the angle between the momentum and the magnetic field approaches the right angle. This also reveals the existence of another expansion parameter, and, in light of it, we provide solutions in an alternative series expression beyond the critical angle. We confirm that these two series expansions work well in the appropriate angle ranges as compared with numerical results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信