变量搜索分布

Daniel M. Steinberg, Rafael Oliveira, Cheng Soon Ong, Edwin V. Bonilla
{"title":"变量搜索分布","authors":"Daniel M. Steinberg, Rafael Oliveira, Cheng Soon Ong, Edwin V. Bonilla","doi":"arxiv-2409.06142","DOIUrl":null,"url":null,"abstract":"We develop variational search distributions (VSD), a method for finding\ndiscrete, combinatorial designs of a rare desired class in a batch sequential\nmanner with a fixed experimental budget. We formalize the requirements and\ndesiderata for this problem and formulate a solution via variational inference\nthat fulfill these. In particular, VSD uses off-the-shelf gradient based\noptimization routines, and can take advantage of scalable predictive models. We\nshow that VSD can outperform existing baseline methods on a set of real\nsequence-design problems in various biological systems.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"26 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational Search Distributions\",\"authors\":\"Daniel M. Steinberg, Rafael Oliveira, Cheng Soon Ong, Edwin V. Bonilla\",\"doi\":\"arxiv-2409.06142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop variational search distributions (VSD), a method for finding\\ndiscrete, combinatorial designs of a rare desired class in a batch sequential\\nmanner with a fixed experimental budget. We formalize the requirements and\\ndesiderata for this problem and formulate a solution via variational inference\\nthat fulfill these. In particular, VSD uses off-the-shelf gradient based\\noptimization routines, and can take advantage of scalable predictive models. We\\nshow that VSD can outperform existing baseline methods on a set of real\\nsequence-design problems in various biological systems.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了变异搜索分布(VSD),这是一种在固定的实验预算下,以批量顺序的方式寻找稀有的理想类别的离散组合设计的方法。我们对这一问题的要求和考虑因素进行了形式化,并通过变异推理提出了一个能满足这些要求的解决方案。特别是,VSD 使用现成的基于梯度的优化程序,并能利用可扩展的预测模型。结果表明,在各种生物系统的一系列实际序列设计问题上,VSD的性能优于现有的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational Search Distributions
We develop variational search distributions (VSD), a method for finding discrete, combinatorial designs of a rare desired class in a batch sequential manner with a fixed experimental budget. We formalize the requirements and desiderata for this problem and formulate a solution via variational inference that fulfill these. In particular, VSD uses off-the-shelf gradient based optimization routines, and can take advantage of scalable predictive models. We show that VSD can outperform existing baseline methods on a set of real sequence-design problems in various biological systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信