拓扑绝缘体中的霍夫斯塔特蝴蝶

Larry Li, Marcin Abram, Abhinav Prem, Stephan Haas
{"title":"拓扑绝缘体中的霍夫斯塔特蝴蝶","authors":"Larry Li, Marcin Abram, Abhinav Prem, Stephan Haas","doi":"arxiv-2409.07383","DOIUrl":null,"url":null,"abstract":"In this chapter, we investigate the energy spectra as well as the bulk and\nsurface states in a two-dimensional system composed of a coupled stack of\none-dimensional dimerized chains in the presence of an external magnetic field.\nSpecifically, we analyze the Hofstadter butterfly patterns that emerge in a 2D\nstack of coupled 1D Su-Schrieffer-Heeger (SSH) chains subject to an external\ntransverse magnetic field. Depending on the parameter regime, we find that the\nenergy spectra of this hybrid topological system can exhibit topologically\nnon-trivial bulk bands separated by energy gaps. Upon introducing boundaries\ninto the system, we observe topologically protected in-gap surface states,\nwhich are protected either by a non-trivial Chern number or by inversion\nsymmetry. We examine the resilience of these surface states against\nperturbations, confirming their expected stability against local\nsymmetry-preserving perturbations.","PeriodicalId":501137,"journal":{"name":"arXiv - PHYS - Mesoscale and Nanoscale Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hofstadter Butterflies in Topological Insulators\",\"authors\":\"Larry Li, Marcin Abram, Abhinav Prem, Stephan Haas\",\"doi\":\"arxiv-2409.07383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, we investigate the energy spectra as well as the bulk and\\nsurface states in a two-dimensional system composed of a coupled stack of\\none-dimensional dimerized chains in the presence of an external magnetic field.\\nSpecifically, we analyze the Hofstadter butterfly patterns that emerge in a 2D\\nstack of coupled 1D Su-Schrieffer-Heeger (SSH) chains subject to an external\\ntransverse magnetic field. Depending on the parameter regime, we find that the\\nenergy spectra of this hybrid topological system can exhibit topologically\\nnon-trivial bulk bands separated by energy gaps. Upon introducing boundaries\\ninto the system, we observe topologically protected in-gap surface states,\\nwhich are protected either by a non-trivial Chern number or by inversion\\nsymmetry. We examine the resilience of these surface states against\\nperturbations, confirming their expected stability against local\\nsymmetry-preserving perturbations.\",\"PeriodicalId\":501137,\"journal\":{\"name\":\"arXiv - PHYS - Mesoscale and Nanoscale Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Mesoscale and Nanoscale Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本章中,我们研究了由耦合的一维二聚链堆叠组成的二维系统在外加磁场作用下的能谱以及体态和表面态。具体来说,我们分析了耦合的一维苏-施里弗-希格(SSH)链的二维堆叠在外加横向磁场作用下出现的霍夫斯塔特蝴蝶图案。根据参数机制的不同,我们发现这种混合拓扑系统的能谱会表现出被能隙分隔的拓扑非三维体带。在系统中引入边界后,我们观察到拓扑保护的隙内表面态,这些表面态受到非三维切尔数或反对称性的保护。我们研究了这些表面态对扰动的恢复能力,证实了它们对本地对称保留扰动的预期稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hofstadter Butterflies in Topological Insulators
In this chapter, we investigate the energy spectra as well as the bulk and surface states in a two-dimensional system composed of a coupled stack of one-dimensional dimerized chains in the presence of an external magnetic field. Specifically, we analyze the Hofstadter butterfly patterns that emerge in a 2D stack of coupled 1D Su-Schrieffer-Heeger (SSH) chains subject to an external transverse magnetic field. Depending on the parameter regime, we find that the energy spectra of this hybrid topological system can exhibit topologically non-trivial bulk bands separated by energy gaps. Upon introducing boundaries into the system, we observe topologically protected in-gap surface states, which are protected either by a non-trivial Chern number or by inversion symmetry. We examine the resilience of these surface states against perturbations, confirming their expected stability against local symmetry-preserving perturbations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信