主动学习的可扩展算法

Youguang Chen, Zheyu Wen, George Biros
{"title":"主动学习的可扩展算法","authors":"Youguang Chen, Zheyu Wen, George Biros","doi":"arxiv-2409.07392","DOIUrl":null,"url":null,"abstract":"FIRAL is a recently proposed deterministic active learning algorithm for\nmulticlass classification using logistic regression. It was shown to outperform\nthe state-of-the-art in terms of accuracy and robustness and comes with\ntheoretical performance guarantees. However, its scalability suffers when\ndealing with datasets featuring a large number of points $n$, dimensions $d$,\nand classes $c$, due to its $\\mathcal{O}(c^2d^2+nc^2d)$ storage and\n$\\mathcal{O}(c^3(nd^2 + bd^3 + bn))$ computational complexity where $b$ is the\nnumber of points to select in active learning. To address these challenges, we\npropose an approximate algorithm with storage requirements reduced to\n$\\mathcal{O}(n(d+c) + cd^2)$ and a computational complexity of\n$\\mathcal{O}(bncd^2)$. Additionally, we present a parallel implementation on\nGPUs. We demonstrate the accuracy and scalability of our approach using MNIST,\nCIFAR-10, Caltech101, and ImageNet. The accuracy tests reveal no deterioration\nin accuracy compared to FIRAL. We report strong and weak scaling tests on up to\n12 GPUs, for three million point synthetic dataset.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Scalable Algorithm for Active Learning\",\"authors\":\"Youguang Chen, Zheyu Wen, George Biros\",\"doi\":\"arxiv-2409.07392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"FIRAL is a recently proposed deterministic active learning algorithm for\\nmulticlass classification using logistic regression. It was shown to outperform\\nthe state-of-the-art in terms of accuracy and robustness and comes with\\ntheoretical performance guarantees. However, its scalability suffers when\\ndealing with datasets featuring a large number of points $n$, dimensions $d$,\\nand classes $c$, due to its $\\\\mathcal{O}(c^2d^2+nc^2d)$ storage and\\n$\\\\mathcal{O}(c^3(nd^2 + bd^3 + bn))$ computational complexity where $b$ is the\\nnumber of points to select in active learning. To address these challenges, we\\npropose an approximate algorithm with storage requirements reduced to\\n$\\\\mathcal{O}(n(d+c) + cd^2)$ and a computational complexity of\\n$\\\\mathcal{O}(bncd^2)$. Additionally, we present a parallel implementation on\\nGPUs. We demonstrate the accuracy and scalability of our approach using MNIST,\\nCIFAR-10, Caltech101, and ImageNet. The accuracy tests reveal no deterioration\\nin accuracy compared to FIRAL. We report strong and weak scaling tests on up to\\n12 GPUs, for three million point synthetic dataset.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

FIRAL 是最近提出的一种使用逻辑回归进行多类分类的确定性主动学习算法。研究表明,该算法在准确性和鲁棒性方面优于最先进的算法,并具有理论性能保证。然而,在处理具有大量点数 $n$、维数 $d$ 和类数 $c$ 的数据集时,由于其存储空间 $\mathcal{O}(c^2d^2+nc^2d)$ 和计算复杂度 $\mathcal{O}(c^3(nd^2 + bd^3 + bn))$(其中 $b$ 是主动学习中要选择的点数),其可扩展性受到了影响。为了应对这些挑战,我们提出了一种近似算法,其存储需求降至$\mathcal{O}(n(d+c) + cd^2)$,计算复杂度为$\mathcal{O}(bncd^2)$。此外,我们还介绍了在 GPU 上的并行实现。我们使用 MNIST、CIFAR-10、Caltech101 和 ImageNet 演示了我们方法的准确性和可扩展性。准确性测试表明,与 FIRAL 相比,准确性没有下降。我们报告了在多达 12 个 GPU 上对 300 万点合成数据集进行的强扩展和弱扩展测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Scalable Algorithm for Active Learning
FIRAL is a recently proposed deterministic active learning algorithm for multiclass classification using logistic regression. It was shown to outperform the state-of-the-art in terms of accuracy and robustness and comes with theoretical performance guarantees. However, its scalability suffers when dealing with datasets featuring a large number of points $n$, dimensions $d$, and classes $c$, due to its $\mathcal{O}(c^2d^2+nc^2d)$ storage and $\mathcal{O}(c^3(nd^2 + bd^3 + bn))$ computational complexity where $b$ is the number of points to select in active learning. To address these challenges, we propose an approximate algorithm with storage requirements reduced to $\mathcal{O}(n(d+c) + cd^2)$ and a computational complexity of $\mathcal{O}(bncd^2)$. Additionally, we present a parallel implementation on GPUs. We demonstrate the accuracy and scalability of our approach using MNIST, CIFAR-10, Caltech101, and ImageNet. The accuracy tests reveal no deterioration in accuracy compared to FIRAL. We report strong and weak scaling tests on up to 12 GPUs, for three million point synthetic dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信