推进因果推论:利用连续治疗进行 ATE 和 CATE 估算的非参数方法

Hugo Gobato Souto, Francisco Louzada Neto
{"title":"推进因果推论:利用连续治疗进行 ATE 和 CATE 估算的非参数方法","authors":"Hugo Gobato Souto, Francisco Louzada Neto","doi":"arxiv-2409.06593","DOIUrl":null,"url":null,"abstract":"This paper introduces a generalized ps-BART model for the estimation of\nAverage Treatment Effect (ATE) and Conditional Average Treatment Effect (CATE)\nin continuous treatments, addressing limitations of the Bayesian Causal Forest\n(BCF) model. The ps-BART model's nonparametric nature allows for flexibility in\ncapturing nonlinear relationships between treatment and outcome variables.\nAcross three distinct sets of Data Generating Processes (DGPs), the ps-BART\nmodel consistently outperforms the BCF model, particularly in highly nonlinear\nsettings. The ps-BART model's robustness in uncertainty estimation and accuracy\nin both point-wise and probabilistic estimation demonstrate its utility for\nreal-world applications. This research fills a crucial gap in causal inference\nliterature, providing a tool better suited for nonlinear treatment-outcome\nrelationships and opening avenues for further exploration in the domain of\ncontinuous treatment effect estimation.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Causal Inference: A Nonparametric Approach to ATE and CATE Estimation with Continuous Treatments\",\"authors\":\"Hugo Gobato Souto, Francisco Louzada Neto\",\"doi\":\"arxiv-2409.06593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a generalized ps-BART model for the estimation of\\nAverage Treatment Effect (ATE) and Conditional Average Treatment Effect (CATE)\\nin continuous treatments, addressing limitations of the Bayesian Causal Forest\\n(BCF) model. The ps-BART model's nonparametric nature allows for flexibility in\\ncapturing nonlinear relationships between treatment and outcome variables.\\nAcross three distinct sets of Data Generating Processes (DGPs), the ps-BART\\nmodel consistently outperforms the BCF model, particularly in highly nonlinear\\nsettings. The ps-BART model's robustness in uncertainty estimation and accuracy\\nin both point-wise and probabilistic estimation demonstrate its utility for\\nreal-world applications. This research fills a crucial gap in causal inference\\nliterature, providing a tool better suited for nonlinear treatment-outcome\\nrelationships and opening avenues for further exploration in the domain of\\ncontinuous treatment effect estimation.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06593\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06593","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文针对贝叶斯因果森林(BCF)模型的局限性,介绍了一种用于估计连续治疗中平均治疗效果(ATE)和条件平均治疗效果(CATE)的广义 ps-BART 模型。在三组不同的数据生成过程(DGPs)中,ps-BART 模型始终优于 BCF 模型,尤其是在高度非线性设置中。ps-BART 模型在不确定性估计方面的稳健性以及在点估计和概率估计方面的准确性证明了它在现实世界应用中的实用性。这项研究填补了因果推断文献中的一个重要空白,提供了一种更适合非线性治疗-结果关系的工具,并为进一步探索连续治疗效果估计领域开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advancing Causal Inference: A Nonparametric Approach to ATE and CATE Estimation with Continuous Treatments
This paper introduces a generalized ps-BART model for the estimation of Average Treatment Effect (ATE) and Conditional Average Treatment Effect (CATE) in continuous treatments, addressing limitations of the Bayesian Causal Forest (BCF) model. The ps-BART model's nonparametric nature allows for flexibility in capturing nonlinear relationships between treatment and outcome variables. Across three distinct sets of Data Generating Processes (DGPs), the ps-BART model consistently outperforms the BCF model, particularly in highly nonlinear settings. The ps-BART model's robustness in uncertainty estimation and accuracy in both point-wise and probabilistic estimation demonstrate its utility for real-world applications. This research fills a crucial gap in causal inference literature, providing a tool better suited for nonlinear treatment-outcome relationships and opening avenues for further exploration in the domain of continuous treatment effect estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信