通过隐含正则化实现无调整在线稳健主成分分析

Lakshmi Jayalal, Gokularam Muthukrishnan, Sheetal Kalyani
{"title":"通过隐含正则化实现无调整在线稳健主成分分析","authors":"Lakshmi Jayalal, Gokularam Muthukrishnan, Sheetal Kalyani","doi":"arxiv-2409.07275","DOIUrl":null,"url":null,"abstract":"The performance of the standard Online Robust Principal Component Analysis\n(OR-PCA) technique depends on the optimum tuning of the explicit regularizers\nand this tuning is dataset sensitive. We aim to remove the dependency on these\ntuning parameters by using implicit regularization. We propose to use the\nimplicit regularization effect of various modified gradient descents to make\nOR-PCA tuning free. Our method incorporates three different versions of\nmodified gradient descent that separately but naturally encourage sparsity and\nlow-rank structures in the data. The proposed method performs comparable or\nbetter than the tuned OR-PCA for both simulated and real-world datasets.\nTuning-free ORPCA makes it more scalable for large datasets since we do not\nrequire dataset-dependent parameter tuning.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"203 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning-Free Online Robust Principal Component Analysis through Implicit Regularization\",\"authors\":\"Lakshmi Jayalal, Gokularam Muthukrishnan, Sheetal Kalyani\",\"doi\":\"arxiv-2409.07275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of the standard Online Robust Principal Component Analysis\\n(OR-PCA) technique depends on the optimum tuning of the explicit regularizers\\nand this tuning is dataset sensitive. We aim to remove the dependency on these\\ntuning parameters by using implicit regularization. We propose to use the\\nimplicit regularization effect of various modified gradient descents to make\\nOR-PCA tuning free. Our method incorporates three different versions of\\nmodified gradient descent that separately but naturally encourage sparsity and\\nlow-rank structures in the data. The proposed method performs comparable or\\nbetter than the tuned OR-PCA for both simulated and real-world datasets.\\nTuning-free ORPCA makes it more scalable for large datasets since we do not\\nrequire dataset-dependent parameter tuning.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"203 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

标准在线稳健主成分分析(OR-PCA)技术的性能取决于显式正则化的最佳调整,而这种调整对数据集非常敏感。我们的目标是通过使用隐式正则化来消除对调整参数的依赖。我们建议利用各种修正梯度下降的隐式正则化效果,使 OR-PCA 的调整不受限制。我们的方法采用了三种不同版本的修正梯度下降法,分别自然地鼓励数据中的稀疏性和低秩结构。在模拟数据集和实际数据集上,所提出的方法都比经过调整的 OR-PCA 性能更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuning-Free Online Robust Principal Component Analysis through Implicit Regularization
The performance of the standard Online Robust Principal Component Analysis (OR-PCA) technique depends on the optimum tuning of the explicit regularizers and this tuning is dataset sensitive. We aim to remove the dependency on these tuning parameters by using implicit regularization. We propose to use the implicit regularization effect of various modified gradient descents to make OR-PCA tuning free. Our method incorporates three different versions of modified gradient descent that separately but naturally encourage sparsity and low-rank structures in the data. The proposed method performs comparable or better than the tuned OR-PCA for both simulated and real-world datasets. Tuning-free ORPCA makes it more scalable for large datasets since we do not require dataset-dependent parameter tuning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信