使用 $K$ 近邻重采样进行限价订单簿模拟和交易评估

Michael Giegrich, Roel Oomen, Christoph Reisinger
{"title":"使用 $K$ 近邻重采样进行限价订单簿模拟和交易评估","authors":"Michael Giegrich, Roel Oomen, Christoph Reisinger","doi":"arxiv-2409.06514","DOIUrl":null,"url":null,"abstract":"In this paper, we show how $K$-nearest neighbor ($K$-NN) resampling, an\noff-policy evaluation method proposed in \\cite{giegrich2023k}, can be applied\nto simulate limit order book (LOB) markets and how it can be used to evaluate\nand calibrate trading strategies. Using historical LOB data, we demonstrate\nthat our simulation method is capable of recreating realistic LOB dynamics and\nthat synthetic trading within the simulation leads to a market impact in line\nwith the corresponding literature. Compared to other statistical LOB simulation\nmethods, our algorithm has theoretical convergence guarantees under general\nconditions, does not require optimization, is easy to implement and\ncomputationally efficient. Furthermore, we show that in a benchmark comparison\nour method outperforms a deep learning-based algorithm for several key\nstatistics. In the context of a LOB with pro-rata type matching, we demonstrate\nhow our algorithm can calibrate the size of limit orders for a liquidation\nstrategy. Finally, we describe how $K$-NN resampling can be modified for\nchoices of higher dimensional state spaces.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"95 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit Order Book Simulation and Trade Evaluation with $K$-Nearest-Neighbor Resampling\",\"authors\":\"Michael Giegrich, Roel Oomen, Christoph Reisinger\",\"doi\":\"arxiv-2409.06514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we show how $K$-nearest neighbor ($K$-NN) resampling, an\\noff-policy evaluation method proposed in \\\\cite{giegrich2023k}, can be applied\\nto simulate limit order book (LOB) markets and how it can be used to evaluate\\nand calibrate trading strategies. Using historical LOB data, we demonstrate\\nthat our simulation method is capable of recreating realistic LOB dynamics and\\nthat synthetic trading within the simulation leads to a market impact in line\\nwith the corresponding literature. Compared to other statistical LOB simulation\\nmethods, our algorithm has theoretical convergence guarantees under general\\nconditions, does not require optimization, is easy to implement and\\ncomputationally efficient. Furthermore, we show that in a benchmark comparison\\nour method outperforms a deep learning-based algorithm for several key\\nstatistics. In the context of a LOB with pro-rata type matching, we demonstrate\\nhow our algorithm can calibrate the size of limit orders for a liquidation\\nstrategy. Finally, we describe how $K$-NN resampling can be modified for\\nchoices of higher dimensional state spaces.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"95 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们展示了如何将 \cite{giegrich2023k}中提出的关闭策略评估方法--$K$-近邻($K$-NN)重采样--应用于模拟限价订单簿(LOB)市场,以及如何将其用于评估和校准交易策略。利用历史限价订单簿数据,我们证明了我们的模拟方法能够再现真实的限价订单簿动态,而且模拟中的合成交易对市场的影响与相应的文献相符。与其他统计 LOB 仿真方法相比,我们的算法在一般条件下具有理论上的收敛性保证,无需优化,易于实现,而且计算效率高。此外,我们还证明,在基准比较中,我们的方法在几个关键指标上优于基于深度学习的算法。在按比例类型匹配的 LOB 背景下,我们展示了我们的算法如何为清算策略校准限价订单的大小。最后,我们介绍了如何修改 $K$-NN 重采样来选择更高维的状态空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limit Order Book Simulation and Trade Evaluation with $K$-Nearest-Neighbor Resampling
In this paper, we show how $K$-nearest neighbor ($K$-NN) resampling, an off-policy evaluation method proposed in \cite{giegrich2023k}, can be applied to simulate limit order book (LOB) markets and how it can be used to evaluate and calibrate trading strategies. Using historical LOB data, we demonstrate that our simulation method is capable of recreating realistic LOB dynamics and that synthetic trading within the simulation leads to a market impact in line with the corresponding literature. Compared to other statistical LOB simulation methods, our algorithm has theoretical convergence guarantees under general conditions, does not require optimization, is easy to implement and computationally efficient. Furthermore, we show that in a benchmark comparison our method outperforms a deep learning-based algorithm for several key statistics. In the context of a LOB with pro-rata type matching, we demonstrate how our algorithm can calibrate the size of limit orders for a liquidation strategy. Finally, we describe how $K$-NN resampling can be modified for choices of higher dimensional state spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信