物理信息深度生成模型的变量推理入门指南

Alex Glyn-Davies, Arnaud Vadeboncoeur, O. Deniz Akyildiz, Ieva Kazlauskaite, Mark Girolami
{"title":"物理信息深度生成模型的变量推理入门指南","authors":"Alex Glyn-Davies, Arnaud Vadeboncoeur, O. Deniz Akyildiz, Ieva Kazlauskaite, Mark Girolami","doi":"arxiv-2409.06560","DOIUrl":null,"url":null,"abstract":"Variational inference (VI) is a computationally efficient and scalable\nmethodology for approximate Bayesian inference. It strikes a balance between\naccuracy of uncertainty quantification and practical tractability. It excels at\ngenerative modelling and inversion tasks due to its built-in Bayesian\nregularisation and flexibility, essential qualities for physics related\nproblems. Deriving the central learning objective for VI must often be tailored\nto new learning tasks where the nature of the problems dictates the conditional\ndependence between variables of interest, such as arising in physics problems.\nIn this paper, we provide an accessible and thorough technical introduction to\nVI for forward and inverse problems, guiding the reader through standard\nderivations of the VI framework and how it can best be realized through deep\nlearning. We then review and unify recent literature exemplifying the creative\nflexibility allowed by VI. This paper is designed for a general scientific\naudience looking to solve physics-based problems with an emphasis on\nuncertainty quantification.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Primer on Variational Inference for Physics-Informed Deep Generative Modelling\",\"authors\":\"Alex Glyn-Davies, Arnaud Vadeboncoeur, O. Deniz Akyildiz, Ieva Kazlauskaite, Mark Girolami\",\"doi\":\"arxiv-2409.06560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Variational inference (VI) is a computationally efficient and scalable\\nmethodology for approximate Bayesian inference. It strikes a balance between\\naccuracy of uncertainty quantification and practical tractability. It excels at\\ngenerative modelling and inversion tasks due to its built-in Bayesian\\nregularisation and flexibility, essential qualities for physics related\\nproblems. Deriving the central learning objective for VI must often be tailored\\nto new learning tasks where the nature of the problems dictates the conditional\\ndependence between variables of interest, such as arising in physics problems.\\nIn this paper, we provide an accessible and thorough technical introduction to\\nVI for forward and inverse problems, guiding the reader through standard\\nderivations of the VI framework and how it can best be realized through deep\\nlearning. We then review and unify recent literature exemplifying the creative\\nflexibility allowed by VI. This paper is designed for a general scientific\\naudience looking to solve physics-based problems with an emphasis on\\nuncertainty quantification.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

变量推理(Variational inference,VI)是一种计算效率高、可扩展的近似贝叶斯推理方法。它在不确定性量化的准确性和实用性之间取得了平衡。由于其内置的贝叶斯规则化和灵活性,它在生成建模和反演任务中表现出色,这些都是物理相关问题的基本特征。在本文中,我们针对正演和反演问题对 VI 进行了深入浅出的技术介绍,引导读者了解 VI 框架的标准衍生,以及如何通过深度学习最好地实现 VI。然后,我们回顾并统一了最近的文献,这些文献体现了 VI 所允许的创造性灵活性。本文面向希望解决物理问题的普通科学读者,重点关注不确定性量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Primer on Variational Inference for Physics-Informed Deep Generative Modelling
Variational inference (VI) is a computationally efficient and scalable methodology for approximate Bayesian inference. It strikes a balance between accuracy of uncertainty quantification and practical tractability. It excels at generative modelling and inversion tasks due to its built-in Bayesian regularisation and flexibility, essential qualities for physics related problems. Deriving the central learning objective for VI must often be tailored to new learning tasks where the nature of the problems dictates the conditional dependence between variables of interest, such as arising in physics problems. In this paper, we provide an accessible and thorough technical introduction to VI for forward and inverse problems, guiding the reader through standard derivations of the VI framework and how it can best be realized through deep learning. We then review and unify recent literature exemplifying the creative flexibility allowed by VI. This paper is designed for a general scientific audience looking to solve physics-based problems with an emphasis on uncertainty quantification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信