利用扩散先验探索用户级梯度反演

Zhuohang Li, Andrew Lowy, Jing Liu, Toshiaki Koike-Akino, Bradley Malin, Kieran Parsons, Ye Wang
{"title":"利用扩散先验探索用户级梯度反演","authors":"Zhuohang Li, Andrew Lowy, Jing Liu, Toshiaki Koike-Akino, Bradley Malin, Kieran Parsons, Ye Wang","doi":"arxiv-2409.07291","DOIUrl":null,"url":null,"abstract":"We explore user-level gradient inversion as a new attack surface in\ndistributed learning. We first investigate existing attacks on their ability to\nmake inferences about private information beyond training data reconstruction.\nMotivated by the low reconstruction quality of existing methods, we propose a\nnovel gradient inversion attack that applies a denoising diffusion model as a\nstrong image prior in order to enhance recovery in the large batch setting.\nUnlike traditional attacks, which aim to reconstruct individual samples and\nsuffer at large batch and image sizes, our approach instead aims to recover a\nrepresentative image that captures the sensitive shared semantic information\ncorresponding to the underlying user. Our experiments with face images\ndemonstrate the ability of our methods to recover realistic facial images along\nwith private user attributes.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring User-level Gradient Inversion with a Diffusion Prior\",\"authors\":\"Zhuohang Li, Andrew Lowy, Jing Liu, Toshiaki Koike-Akino, Bradley Malin, Kieran Parsons, Ye Wang\",\"doi\":\"arxiv-2409.07291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore user-level gradient inversion as a new attack surface in\\ndistributed learning. We first investigate existing attacks on their ability to\\nmake inferences about private information beyond training data reconstruction.\\nMotivated by the low reconstruction quality of existing methods, we propose a\\nnovel gradient inversion attack that applies a denoising diffusion model as a\\nstrong image prior in order to enhance recovery in the large batch setting.\\nUnlike traditional attacks, which aim to reconstruct individual samples and\\nsuffer at large batch and image sizes, our approach instead aims to recover a\\nrepresentative image that captures the sensitive shared semantic information\\ncorresponding to the underlying user. Our experiments with face images\\ndemonstrate the ability of our methods to recover realistic facial images along\\nwith private user attributes.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将用户级梯度反转作为一种新的分布式学习攻击面进行了探索。我们首先研究了现有攻击在训练数据重建之外对隐私信息进行推断的能力。由于现有方法的重建质量较低,我们提出了一种新的梯度反转攻击,它应用去噪扩散模型作为强图像先验,以增强大批量环境下的恢复能力。传统攻击旨在重建单个样本,在大批量和大图像规模下会受到影响,而我们的方法则旨在恢复呈现性图像,捕捉与底层用户相对应的敏感共享语义信息。我们对人脸图像的实验证明,我们的方法能够恢复真实的人脸图像以及用户的私人属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring User-level Gradient Inversion with a Diffusion Prior
We explore user-level gradient inversion as a new attack surface in distributed learning. We first investigate existing attacks on their ability to make inferences about private information beyond training data reconstruction. Motivated by the low reconstruction quality of existing methods, we propose a novel gradient inversion attack that applies a denoising diffusion model as a strong image prior in order to enhance recovery in the large batch setting. Unlike traditional attacks, which aim to reconstruct individual samples and suffer at large batch and image sizes, our approach instead aims to recover a representative image that captures the sensitive shared semantic information corresponding to the underlying user. Our experiments with face images demonstrate the ability of our methods to recover realistic facial images along with private user attributes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信