学习用于非参数独立性检验的深度核

Nathaniel Xu, Feng Liu, Danica J. Sutherland
{"title":"学习用于非参数独立性检验的深度核","authors":"Nathaniel Xu, Feng Liu, Danica J. Sutherland","doi":"arxiv-2409.06890","DOIUrl":null,"url":null,"abstract":"The Hilbert-Schmidt Independence Criterion (HSIC) is a powerful tool for\nnonparametric detection of dependence between random variables. It crucially\ndepends, however, on the selection of reasonable kernels; commonly-used choices\nlike the Gaussian kernel, or the kernel that yields the distance covariance,\nare sufficient only for amply sized samples from data distributions with\nrelatively simple forms of dependence. We propose a scheme for selecting the\nkernels used in an HSIC-based independence test, based on maximizing an\nestimate of the asymptotic test power. We prove that maximizing this estimate\nindeed approximately maximizes the true power of the test, and demonstrate that\nour learned kernels can identify forms of structured dependence between random\nvariables in various experiments.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"100 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Deep Kernels for Non-Parametric Independence Testing\",\"authors\":\"Nathaniel Xu, Feng Liu, Danica J. Sutherland\",\"doi\":\"arxiv-2409.06890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hilbert-Schmidt Independence Criterion (HSIC) is a powerful tool for\\nnonparametric detection of dependence between random variables. It crucially\\ndepends, however, on the selection of reasonable kernels; commonly-used choices\\nlike the Gaussian kernel, or the kernel that yields the distance covariance,\\nare sufficient only for amply sized samples from data distributions with\\nrelatively simple forms of dependence. We propose a scheme for selecting the\\nkernels used in an HSIC-based independence test, based on maximizing an\\nestimate of the asymptotic test power. We prove that maximizing this estimate\\nindeed approximately maximizes the true power of the test, and demonstrate that\\nour learned kernels can identify forms of structured dependence between random\\nvariables in various experiments.\",\"PeriodicalId\":501340,\"journal\":{\"name\":\"arXiv - STAT - Machine Learning\",\"volume\":\"100 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

希尔伯特-施密特独立准则(Hilbert-Schmidt Independence Criterion,HSIC)是一种用于非参数检测随机变量之间依赖关系的强大工具。然而,它的关键在于选择合理的核;常用的选择,如高斯核或产生距离协方差的核,只适用于具有相对简单依赖形式的数据分布的足够大小的样本。我们提出了一种方案,用于选择基于 HSIC 的独立性检验中使用的核,其基础是最大化渐近检验功率的估计值。我们证明,最大化这一估计值实际上近似最大化了检验的真实功率,并证明我们学习的核可以识别各种实验中随机变量之间的结构依赖形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Deep Kernels for Non-Parametric Independence Testing
The Hilbert-Schmidt Independence Criterion (HSIC) is a powerful tool for nonparametric detection of dependence between random variables. It crucially depends, however, on the selection of reasonable kernels; commonly-used choices like the Gaussian kernel, or the kernel that yields the distance covariance, are sufficient only for amply sized samples from data distributions with relatively simple forms of dependence. We propose a scheme for selecting the kernels used in an HSIC-based independence test, based on maximizing an estimate of the asymptotic test power. We prove that maximizing this estimate indeed approximately maximizes the true power of the test, and demonstrate that our learned kernels can identify forms of structured dependence between random variables in various experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信