非阿贝尔有限简单群直积的切博塔列夫不变式

Jessica Anzanello, Andrea Lucchini, Gareth Tracey
{"title":"非阿贝尔有限简单群直积的切博塔列夫不变式","authors":"Jessica Anzanello, Andrea Lucchini, Gareth Tracey","doi":"arxiv-2408.12298","DOIUrl":null,"url":null,"abstract":"A subset $\\{g_1, \\ldots , g_d\\}$ of a finite group $G$ invariably generates\n$G$ if $\\{g_1^{x_1}, \\ldots , g_d^{x_d}\\}$ generates $G$ for every choice of\n$x_i \\in G$. The Chebotarev invariant $C(G)$ of $G$ is the expected value of\nthe random variable $n$ that is minimal subject to the requirement that $n$\nrandomly chosen elements of $G$ invariably generate $G$. In this paper, we show\nthat if $G$ is a nonabelian finite simple group, then $C(G)$ is absolutely\nbounded. More generally, we show that if $G$ is a direct product of $k$\nnonabelian finite simple groups, then $C(G)=\\log{k}/\\log{\\alpha(G)}+O(1)$,\nwhere $\\alpha$ is an invariant completely determined by the proportion of\nderangements of the primitive permutation actions of the factors in $G$. It\nfollows from the proof of the Boston-Shalev conjecture that $C(G)=O(\\log{k})$.\nWe also derive sharp bounds on the expected number of generators for $G$.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Chebotarev invariant for direct products of nonabelian finite simple groups\",\"authors\":\"Jessica Anzanello, Andrea Lucchini, Gareth Tracey\",\"doi\":\"arxiv-2408.12298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A subset $\\\\{g_1, \\\\ldots , g_d\\\\}$ of a finite group $G$ invariably generates\\n$G$ if $\\\\{g_1^{x_1}, \\\\ldots , g_d^{x_d}\\\\}$ generates $G$ for every choice of\\n$x_i \\\\in G$. The Chebotarev invariant $C(G)$ of $G$ is the expected value of\\nthe random variable $n$ that is minimal subject to the requirement that $n$\\nrandomly chosen elements of $G$ invariably generate $G$. In this paper, we show\\nthat if $G$ is a nonabelian finite simple group, then $C(G)$ is absolutely\\nbounded. More generally, we show that if $G$ is a direct product of $k$\\nnonabelian finite simple groups, then $C(G)=\\\\log{k}/\\\\log{\\\\alpha(G)}+O(1)$,\\nwhere $\\\\alpha$ is an invariant completely determined by the proportion of\\nderangements of the primitive permutation actions of the factors in $G$. It\\nfollows from the proof of the Boston-Shalev conjecture that $C(G)=O(\\\\log{k})$.\\nWe also derive sharp bounds on the expected number of generators for $G$.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12298\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果 ${g_1^{x_1}, \ldots , g_d^{x_d}}$ 在 G$ 中每选择一个 x_i 都生成 $G$,那么有限群 $G$ 的子集 ${g_1, \ldots , g_d^{x_d}$ 不变地生成 $G$。$G$的切波塔列夫不变式$C(G)$是随机变量$n$的期望值,该期望值在随机选择$G$中的$n$元素不变地生成$G$的条件下是最小的。在本文中,我们证明了如果 $G$ 是非标注有限简单群,那么 $C(G)$ 是绝对有界的。更广义地说,我们证明了如果 $G$ 是 $k$ 非标注有限简单群的直接乘积,那么 $C(G)=\log{k}/\log{alpha(G)}+O(1)$, 其中 $\alpha$ 是一个不变量,完全由 $G$ 中因子的基元置换作用的邻接比例决定。根据波士顿-沙列夫猜想的证明,$C(G)=O(\log{k})$.我们还推导出$G$的预期生成数的尖锐边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Chebotarev invariant for direct products of nonabelian finite simple groups
A subset $\{g_1, \ldots , g_d\}$ of a finite group $G$ invariably generates $G$ if $\{g_1^{x_1}, \ldots , g_d^{x_d}\}$ generates $G$ for every choice of $x_i \in G$. The Chebotarev invariant $C(G)$ of $G$ is the expected value of the random variable $n$ that is minimal subject to the requirement that $n$ randomly chosen elements of $G$ invariably generate $G$. In this paper, we show that if $G$ is a nonabelian finite simple group, then $C(G)$ is absolutely bounded. More generally, we show that if $G$ is a direct product of $k$ nonabelian finite simple groups, then $C(G)=\log{k}/\log{\alpha(G)}+O(1)$, where $\alpha$ is an invariant completely determined by the proportion of derangements of the primitive permutation actions of the factors in $G$. It follows from the proof of the Boston-Shalev conjecture that $C(G)=O(\log{k})$. We also derive sharp bounds on the expected number of generators for $G$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信