{"title":"可解鲍姆斯莱格-索利塔网格","authors":"Noah Caplinger","doi":"arxiv-2408.13381","DOIUrl":null,"url":null,"abstract":"The solvable Baumslag Solitar groups $\\text{BS}(1,n)$ each admit a canonical\nmodel space, $X_n$. We give a complete classification of lattices in $G_n =\n\\text{Isom}^+(X_n)$ and find that such lattices fail to be strongly\nrigid$\\unicode{x2014}$there are automorphisms of lattices $\\Gamma \\subset G_n$\nwhich do not extend to $G_n$$\\unicode{x2014}$but do satisfy a weaker form of\nrigidity: for all isomorphic lattices $\\Gamma_1,\\Gamma_2\\subset G_n$, there is\nan automorphism $\\rho \\in \\text{Aut}(G_n)$ so that $\\rho(\\Gamma_1) = \\Gamma_2$.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solvable Baumslag-Solitar Lattices\",\"authors\":\"Noah Caplinger\",\"doi\":\"arxiv-2408.13381\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The solvable Baumslag Solitar groups $\\\\text{BS}(1,n)$ each admit a canonical\\nmodel space, $X_n$. We give a complete classification of lattices in $G_n =\\n\\\\text{Isom}^+(X_n)$ and find that such lattices fail to be strongly\\nrigid$\\\\unicode{x2014}$there are automorphisms of lattices $\\\\Gamma \\\\subset G_n$\\nwhich do not extend to $G_n$$\\\\unicode{x2014}$but do satisfy a weaker form of\\nrigidity: for all isomorphic lattices $\\\\Gamma_1,\\\\Gamma_2\\\\subset G_n$, there is\\nan automorphism $\\\\rho \\\\in \\\\text{Aut}(G_n)$ so that $\\\\rho(\\\\Gamma_1) = \\\\Gamma_2$.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13381\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The solvable Baumslag Solitar groups $\text{BS}(1,n)$ each admit a canonical
model space, $X_n$. We give a complete classification of lattices in $G_n =
\text{Isom}^+(X_n)$ and find that such lattices fail to be strongly
rigid$\unicode{x2014}$there are automorphisms of lattices $\Gamma \subset G_n$
which do not extend to $G_n$$\unicode{x2014}$but do satisfy a weaker form of
rigidity: for all isomorphic lattices $\Gamma_1,\Gamma_2\subset G_n$, there is
an automorphism $\rho \in \text{Aut}(G_n)$ so that $\rho(\Gamma_1) = \Gamma_2$.