{"title":"字符三元组和相对缺陷零字符","authors":"Junwei Zhang, Lizhong Wang, Ping Jin","doi":"arxiv-2408.13436","DOIUrl":null,"url":null,"abstract":"Given a character triple $(G,N,\\theta)$, which means that $G$ is a finite\ngroup with $N \\vartriangleleft G$ and $\\theta\\in{\\rm Irr}(N)$ is $G$-invariant,\nwe introduce the notion of a $\\pi$-quasi extension of $\\theta$ to $G$ where\n$\\pi$ is the set of primes dividing the order of the cohomology element\n$[\\theta]_{G/N}\\in H^2(G/N,\\mathbb{C}^\\times)$ associated with the character\ntriple, and then establish the uniqueness of such an extension in the\nnormalized case. As an application, we use the $\\pi$-quasi extension of\n$\\theta$ to construct a bijection from the set of $\\pi$-defect zero characters\nof $G/N$ onto the set of relative $\\pi$-defect zero characters of $G$ over\n$\\theta$. Our results generalize the related theorems of M. Murai and of G.\nNavarro.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Character triples and relative defect zero characters\",\"authors\":\"Junwei Zhang, Lizhong Wang, Ping Jin\",\"doi\":\"arxiv-2408.13436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a character triple $(G,N,\\\\theta)$, which means that $G$ is a finite\\ngroup with $N \\\\vartriangleleft G$ and $\\\\theta\\\\in{\\\\rm Irr}(N)$ is $G$-invariant,\\nwe introduce the notion of a $\\\\pi$-quasi extension of $\\\\theta$ to $G$ where\\n$\\\\pi$ is the set of primes dividing the order of the cohomology element\\n$[\\\\theta]_{G/N}\\\\in H^2(G/N,\\\\mathbb{C}^\\\\times)$ associated with the character\\ntriple, and then establish the uniqueness of such an extension in the\\nnormalized case. As an application, we use the $\\\\pi$-quasi extension of\\n$\\\\theta$ to construct a bijection from the set of $\\\\pi$-defect zero characters\\nof $G/N$ onto the set of relative $\\\\pi$-defect zero characters of $G$ over\\n$\\\\theta$. Our results generalize the related theorems of M. Murai and of G.\\nNavarro.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
给定一个特征三元组 $(G,N,\theta)$,这意味着 $G$ 是一个有限群,有 $N \vartriangleleft G$,并且 $\theta\in\{rm Irr}(N)$是 $G$ 不变的、我们引入了$\theta$到$G$的$\pi$-准扩展的概念,其中$\pi$是除以H^2(G/N,\mathbb{C}^\times)$中与特征三元组相关的同调元素$[\theta]_{G/N}\的阶的素集,然后建立了这种扩展在规范化情况下的唯一性。作为应用,我们使用$theta$的$\pi$-准扩展来构造一个从$G/N$的$\pi$-缺陷零字符集到$G$在$theta$上的相对$\pi$-缺陷零字符集的双射。我们的结果概括了 M. Murai 和 G. Navarro 的相关定理。
Character triples and relative defect zero characters
Given a character triple $(G,N,\theta)$, which means that $G$ is a finite
group with $N \vartriangleleft G$ and $\theta\in{\rm Irr}(N)$ is $G$-invariant,
we introduce the notion of a $\pi$-quasi extension of $\theta$ to $G$ where
$\pi$ is the set of primes dividing the order of the cohomology element
$[\theta]_{G/N}\in H^2(G/N,\mathbb{C}^\times)$ associated with the character
triple, and then establish the uniqueness of such an extension in the
normalized case. As an application, we use the $\pi$-quasi extension of
$\theta$ to construct a bijection from the set of $\pi$-defect zero characters
of $G/N$ onto the set of relative $\pi$-defect zero characters of $G$ over
$\theta$. Our results generalize the related theorems of M. Murai and of G.
Navarro.