强化学习难以解决数学问题的原因:案例研究

Ali Shehper, Anibal M. Medina-Mardones, Bartłomiej Lewandowski, Angus Gruen, Piotr Kucharski, Sergei Gukov
{"title":"强化学习难以解决数学问题的原因:案例研究","authors":"Ali Shehper, Anibal M. Medina-Mardones, Bartłomiej Lewandowski, Angus Gruen, Piotr Kucharski, Sergei Gukov","doi":"arxiv-2408.15332","DOIUrl":null,"url":null,"abstract":"Using a long-standing conjecture from combinatorial group theory, we explore,\nfrom multiple angles, the challenges of finding rare instances carrying\ndisproportionately high rewards. Based on lessons learned in the mathematical\ncontext defined by the Andrews-Curtis conjecture, we propose algorithmic\nimprovements that can be relevant in other domains with ultra-sparse reward\nproblems. Although our case study can be formulated as a game, its shortest\nwinning sequences are potentially $10^6$ or $10^9$ times longer than those\nencountered in chess. In the process of our study, we demonstrate that one of\nthe potential counterexamples due to Akbulut and Kirby, whose status escaped\ndirect mathematical methods for 39 years, is stably AC-trivial.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"What makes math problems hard for reinforcement learning: a case study\",\"authors\":\"Ali Shehper, Anibal M. Medina-Mardones, Bartłomiej Lewandowski, Angus Gruen, Piotr Kucharski, Sergei Gukov\",\"doi\":\"arxiv-2408.15332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using a long-standing conjecture from combinatorial group theory, we explore,\\nfrom multiple angles, the challenges of finding rare instances carrying\\ndisproportionately high rewards. Based on lessons learned in the mathematical\\ncontext defined by the Andrews-Curtis conjecture, we propose algorithmic\\nimprovements that can be relevant in other domains with ultra-sparse reward\\nproblems. Although our case study can be formulated as a game, its shortest\\nwinning sequences are potentially $10^6$ or $10^9$ times longer than those\\nencountered in chess. In the process of our study, we demonstrate that one of\\nthe potential counterexamples due to Akbulut and Kirby, whose status escaped\\ndirect mathematical methods for 39 years, is stably AC-trivial.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15332\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15332","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用组合群理论中的一个长期存在的猜想,从多个角度探讨了寻找带有不成比例的高奖励的罕见实例所面临的挑战。基于在安德鲁斯-柯蒂斯猜想所定义的数学语境中吸取的经验教训,我们提出了一些算法改进建议,这些建议可能适用于其他具有超稀疏奖励问题的领域。虽然我们的案例研究可以表述为一个游戏,但其最短的获胜序列可能比国际象棋中遇到的序列长 10^6$ 或 10^9$ 倍。在我们的研究过程中,我们证明了阿克布卢特和柯比提出的潜在反例之一是稳定的 AC-三维反例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
What makes math problems hard for reinforcement learning: a case study
Using a long-standing conjecture from combinatorial group theory, we explore, from multiple angles, the challenges of finding rare instances carrying disproportionately high rewards. Based on lessons learned in the mathematical context defined by the Andrews-Curtis conjecture, we propose algorithmic improvements that can be relevant in other domains with ultra-sparse reward problems. Although our case study can be formulated as a game, its shortest winning sequences are potentially $10^6$ or $10^9$ times longer than those encountered in chess. In the process of our study, we demonstrate that one of the potential counterexamples due to Akbulut and Kirby, whose status escaped direct mathematical methods for 39 years, is stably AC-trivial.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信