手性与$G_2(q)$中的非实数元素

Sushil Bhunia, Amit Kulshrestha, Anupam Singh
{"title":"手性与$G_2(q)$中的非实数元素","authors":"Sushil Bhunia, Amit Kulshrestha, Anupam Singh","doi":"arxiv-2408.15546","DOIUrl":null,"url":null,"abstract":"In this article, we determine the non-real elements--the ones that are not\nconjugate to their inverses--in the group $G = G_2(q)$ when $char(F_q)\\neq\n2,3$. We use this to show that this group is chiral; that is, there is a word w\nsuch that $w(G)\\neq w(G)^{-1}$. We also show that most classical finite simple\ngroups are achiral","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chirality and non-real elements in $G_2(q)$\",\"authors\":\"Sushil Bhunia, Amit Kulshrestha, Anupam Singh\",\"doi\":\"arxiv-2408.15546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we determine the non-real elements--the ones that are not\\nconjugate to their inverses--in the group $G = G_2(q)$ when $char(F_q)\\\\neq\\n2,3$. We use this to show that this group is chiral; that is, there is a word w\\nsuch that $w(G)\\\\neq w(G)^{-1}$. We also show that most classical finite simple\\ngroups are achiral\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们确定了当 $char(F_q)\neq2,3$ 时,$G = G_2(q)$ 群中的非实数元素--即与它们的反函数不共轭的元素。我们利用这一点来证明这个群是手性的;也就是说,有一个词 wsuch $w(G)\neq w(G)^{-1}$。我们还证明了大多数经典有限简单群是无手性的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chirality and non-real elements in $G_2(q)$
In this article, we determine the non-real elements--the ones that are not conjugate to their inverses--in the group $G = G_2(q)$ when $char(F_q)\neq 2,3$. We use this to show that this group is chiral; that is, there is a word w such that $w(G)\neq w(G)^{-1}$. We also show that most classical finite simple groups are achiral
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信