{"title":"手性与$G_2(q)$中的非实数元素","authors":"Sushil Bhunia, Amit Kulshrestha, Anupam Singh","doi":"arxiv-2408.15546","DOIUrl":null,"url":null,"abstract":"In this article, we determine the non-real elements--the ones that are not\nconjugate to their inverses--in the group $G = G_2(q)$ when $char(F_q)\\neq\n2,3$. We use this to show that this group is chiral; that is, there is a word w\nsuch that $w(G)\\neq w(G)^{-1}$. We also show that most classical finite simple\ngroups are achiral","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chirality and non-real elements in $G_2(q)$\",\"authors\":\"Sushil Bhunia, Amit Kulshrestha, Anupam Singh\",\"doi\":\"arxiv-2408.15546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we determine the non-real elements--the ones that are not\\nconjugate to their inverses--in the group $G = G_2(q)$ when $char(F_q)\\\\neq\\n2,3$. We use this to show that this group is chiral; that is, there is a word w\\nsuch that $w(G)\\\\neq w(G)^{-1}$. We also show that most classical finite simple\\ngroups are achiral\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this article, we determine the non-real elements--the ones that are not
conjugate to their inverses--in the group $G = G_2(q)$ when $char(F_q)\neq
2,3$. We use this to show that this group is chiral; that is, there is a word w
such that $w(G)\neq w(G)^{-1}$. We also show that most classical finite simple
groups are achiral