循环上定义的关联超图

Siddharth Malviy, Vipul Kakkar
{"title":"循环上定义的关联超图","authors":"Siddharth Malviy, Vipul Kakkar","doi":"arxiv-2408.16459","DOIUrl":null,"url":null,"abstract":"In this paper, we define a new hypergraph $\\mathcal{H(V,E)}$ on a loop $L$,\nwhere $\\mathcal{V}$ is the set of points of the loop $L$ and $\\mathcal{E}$ is\nthe set of hyperedges $e=\\{x,y,z\\}$ such that $x,y$ and $z$ associate in the\norder they are written. We call this hypergraph as the associating hypergraph\non a loop $L$. We study certain properites of associating hypergraphs on the\nMoufang loop $M(D_n,2)$, where $D_n$ denotes the dihedral group of order $2n$.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Associating hypergraphs defined on loops\",\"authors\":\"Siddharth Malviy, Vipul Kakkar\",\"doi\":\"arxiv-2408.16459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we define a new hypergraph $\\\\mathcal{H(V,E)}$ on a loop $L$,\\nwhere $\\\\mathcal{V}$ is the set of points of the loop $L$ and $\\\\mathcal{E}$ is\\nthe set of hyperedges $e=\\\\{x,y,z\\\\}$ such that $x,y$ and $z$ associate in the\\norder they are written. We call this hypergraph as the associating hypergraph\\non a loop $L$. We study certain properites of associating hypergraphs on the\\nMoufang loop $M(D_n,2)$, where $D_n$ denotes the dihedral group of order $2n$.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16459\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们在环路 $L$ 上定义了一个新的超图 $\mathcal{H(V,E)}$,其中 $\mathcal{V}$ 是环路 $L$ 的点集,$\mathcal{E}$ 是超边 $e=\{x,y,z\}$的集合,使得 $x,y$ 和 $z$ 按它们的写法顺序关联起来。我们称这种超图为关联超图,即循环 $L$。我们研究莫方环 $M(D_n,2)$上关联超图的某些性质,其中 $D_n$ 表示阶数为 2n$ 的二面群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Associating hypergraphs defined on loops
In this paper, we define a new hypergraph $\mathcal{H(V,E)}$ on a loop $L$, where $\mathcal{V}$ is the set of points of the loop $L$ and $\mathcal{E}$ is the set of hyperedges $e=\{x,y,z\}$ such that $x,y$ and $z$ associate in the order they are written. We call this hypergraph as the associating hypergraph on a loop $L$. We study certain properites of associating hypergraphs on the Moufang loop $M(D_n,2)$, where $D_n$ denotes the dihedral group of order $2n$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信