具有独特内卷的群体中的和谐序列

Mohammad Javaheri, Lydia de Wolf
{"title":"具有独特内卷的群体中的和谐序列","authors":"Mohammad Javaheri, Lydia de Wolf","doi":"arxiv-2408.16207","DOIUrl":null,"url":null,"abstract":"We study several combinatorial properties of finite groups that are related\nto the notions of sequenceability, R-sequenceability, and harmonious sequences.\nIn particular, we show that in every abelian group $G$ with a unique involution\n$\\imath_G$ there exists a permutation $g_0,\\ldots, g_{m}$ of elements of $G\n\\backslash \\{\\imath_G\\}$ such that the consecutive sums $g_0+g_1,\ng_1+g_2,\\ldots, g_{m}+g_0$ also form a permutation of elements of $G\\backslash\n\\{\\imath_G\\}$. We also show that in every abelian group of order at least 4\nthere exists a sequence containing each non-identity element of $G$ exactly\ntwice such that the consecutive sums also contain each non-identity element of\n$G$ twice. We apply several results to the existence of transversals in Latin\nsquares.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonious sequences in groups with a unique involution\",\"authors\":\"Mohammad Javaheri, Lydia de Wolf\",\"doi\":\"arxiv-2408.16207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study several combinatorial properties of finite groups that are related\\nto the notions of sequenceability, R-sequenceability, and harmonious sequences.\\nIn particular, we show that in every abelian group $G$ with a unique involution\\n$\\\\imath_G$ there exists a permutation $g_0,\\\\ldots, g_{m}$ of elements of $G\\n\\\\backslash \\\\{\\\\imath_G\\\\}$ such that the consecutive sums $g_0+g_1,\\ng_1+g_2,\\\\ldots, g_{m}+g_0$ also form a permutation of elements of $G\\\\backslash\\n\\\\{\\\\imath_G\\\\}$. We also show that in every abelian group of order at least 4\\nthere exists a sequence containing each non-identity element of $G$ exactly\\ntwice such that the consecutive sums also contain each non-identity element of\\n$G$ twice. We apply several results to the existence of transversals in Latin\\nsquares.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了有限群的几个组合性质,这些性质与可序列性、R-可序列性和和谐序列等概念有关。特别是,我们证明了在每一个具有唯一内卷$/imath_G$的无性群$G$中,都存在一个$g_0,\ldots、的元素的排列组合 $g_{m}$,使得连续和 $g_0+g_1,g_1+g_2,\ldots, g_{m}+g_0$ 也构成 $G\backslash\{imath_G\}$ 的元素的排列组合。我们还证明,在每一个阶数至少为 4 的无性群中,都存在一个包含 $G$ 的每个非同位元素两次的序列,这样连续的和也包含 $G$ 的每个非同位元素两次。我们将几个结果应用于拉丁方阵中横轴的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonious sequences in groups with a unique involution
We study several combinatorial properties of finite groups that are related to the notions of sequenceability, R-sequenceability, and harmonious sequences. In particular, we show that in every abelian group $G$ with a unique involution $\imath_G$ there exists a permutation $g_0,\ldots, g_{m}$ of elements of $G \backslash \{\imath_G\}$ such that the consecutive sums $g_0+g_1, g_1+g_2,\ldots, g_{m}+g_0$ also form a permutation of elements of $G\backslash \{\imath_G\}$. We also show that in every abelian group of order at least 4 there exists a sequence containing each non-identity element of $G$ exactly twice such that the consecutive sums also contain each non-identity element of $G$ twice. We apply several results to the existence of transversals in Latin squares.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信