具有罕见怀特海图形的 3-manifold脊柱循环展示

Gerald Williams
{"title":"具有罕见怀特海图形的 3-manifold脊柱循环展示","authors":"Gerald Williams","doi":"arxiv-2408.17125","DOIUrl":null,"url":null,"abstract":"We consider two families of cyclic presentations and show that, subject to\ncertain conditions on the defining parameters, they are spines of closed\n3-manifolds. For the first family, the Whitehead graphs have not previously\nbeen observed in this context, and the corresponding manifolds are lens spaces.\nThe second family provides new examples where the reduced Whitehead graphs are\nthose of the Fractional Fibonacci presentations; here the corresponding\nmanifolds are often (but not always) hyperbolic.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3-manifold spine cyclic presentations with seldom seen Whitehead graphs\",\"authors\":\"Gerald Williams\",\"doi\":\"arxiv-2408.17125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider two families of cyclic presentations and show that, subject to\\ncertain conditions on the defining parameters, they are spines of closed\\n3-manifolds. For the first family, the Whitehead graphs have not previously\\nbeen observed in this context, and the corresponding manifolds are lens spaces.\\nThe second family provides new examples where the reduced Whitehead graphs are\\nthose of the Fractional Fibonacci presentations; here the corresponding\\nmanifolds are often (but not always) hyperbolic.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了两个循环呈现系列,并证明在定义参数的特定条件下,它们是封闭 3 流形的脊。第二个系列提供了新的例子,其中还原的白头图是分数斐波那契呈现的白头图;这里相应的流形通常(但不总是)是双曲的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3-manifold spine cyclic presentations with seldom seen Whitehead graphs
We consider two families of cyclic presentations and show that, subject to certain conditions on the defining parameters, they are spines of closed 3-manifolds. For the first family, the Whitehead graphs have not previously been observed in this context, and the corresponding manifolds are lens spaces. The second family provides new examples where the reduced Whitehead graphs are those of the Fractional Fibonacci presentations; here the corresponding manifolds are often (but not always) hyperbolic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信