具有三维典型奇异点的刚性环四分体的分类

Christian Gleissner, Julia Kotonski
{"title":"具有三维典型奇异点的刚性环四分体的分类","authors":"Christian Gleissner, Julia Kotonski","doi":"arxiv-2409.01050","DOIUrl":null,"url":null,"abstract":"We provide a fine classification of rigid three-dimensional torus quotients\nwith isolated canonical singularities, up to biholomorphism and diffeomorphism.\nThis complements the classification of Calabi-Yau 3-folds of type $\\rm{III}_0$,\nwhich are those quotients with Gorenstein singularities.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Classification of Rigid Torus Quotients with Canonical Singularities in Dimension Three\",\"authors\":\"Christian Gleissner, Julia Kotonski\",\"doi\":\"arxiv-2409.01050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a fine classification of rigid three-dimensional torus quotients\\nwith isolated canonical singularities, up to biholomorphism and diffeomorphism.\\nThis complements the classification of Calabi-Yau 3-folds of type $\\\\rm{III}_0$,\\nwhich are those quotients with Gorenstein singularities.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提供了一个具有孤立卡农奇点的刚性三维环商数的精细分类,直至双态和差态。这是对$\rm{III}_0$型卡拉比-尤3折线分类的补充,后者是那些具有戈伦斯坦奇点的商数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Classification of Rigid Torus Quotients with Canonical Singularities in Dimension Three
We provide a fine classification of rigid three-dimensional torus quotients with isolated canonical singularities, up to biholomorphism and diffeomorphism. This complements the classification of Calabi-Yau 3-folds of type $\rm{III}_0$, which are those quotients with Gorenstein singularities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信