{"title":"具有三维典型奇异点的刚性环四分体的分类","authors":"Christian Gleissner, Julia Kotonski","doi":"arxiv-2409.01050","DOIUrl":null,"url":null,"abstract":"We provide a fine classification of rigid three-dimensional torus quotients\nwith isolated canonical singularities, up to biholomorphism and diffeomorphism.\nThis complements the classification of Calabi-Yau 3-folds of type $\\rm{III}_0$,\nwhich are those quotients with Gorenstein singularities.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Classification of Rigid Torus Quotients with Canonical Singularities in Dimension Three\",\"authors\":\"Christian Gleissner, Julia Kotonski\",\"doi\":\"arxiv-2409.01050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We provide a fine classification of rigid three-dimensional torus quotients\\nwith isolated canonical singularities, up to biholomorphism and diffeomorphism.\\nThis complements the classification of Calabi-Yau 3-folds of type $\\\\rm{III}_0$,\\nwhich are those quotients with Gorenstein singularities.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Classification of Rigid Torus Quotients with Canonical Singularities in Dimension Three
We provide a fine classification of rigid three-dimensional torus quotients
with isolated canonical singularities, up to biholomorphism and diffeomorphism.
This complements the classification of Calabi-Yau 3-folds of type $\rm{III}_0$,
which are those quotients with Gorenstein singularities.