非弗罗贝纽斯群中的异变

Daniele Garzoni
{"title":"非弗罗贝纽斯群中的异变","authors":"Daniele Garzoni","doi":"arxiv-2409.03305","DOIUrl":null,"url":null,"abstract":"We prove that if $G$ is a transitive permutation group of sufficiently large\ndegree $n$, then either $G$ is primitive and Frobenius, or the proportion of\nderangements in $G$ is larger than $1/(2n^{1/2})$. This is sharp, generalizes\nsubstantially bounds of Cameron--Cohen and Guralnick--Wan, and settles a\nconjecture of Guralnick--Tiep in large degree. We also give an application to\ncoverings of varieties over finite fields.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derangements in non-Frobenius groups\",\"authors\":\"Daniele Garzoni\",\"doi\":\"arxiv-2409.03305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that if $G$ is a transitive permutation group of sufficiently large\\ndegree $n$, then either $G$ is primitive and Frobenius, or the proportion of\\nderangements in $G$ is larger than $1/(2n^{1/2})$. This is sharp, generalizes\\nsubstantially bounds of Cameron--Cohen and Guralnick--Wan, and settles a\\nconjecture of Guralnick--Tiep in large degree. We also give an application to\\ncoverings of varieties over finite fields.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03305\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果 $G$ 是一个阶数足够大的 $n$ 的传递置换群,那么要么 $G$ 是基元的和弗罗贝尼斯的,要么 $G$ 中derangements 的比例大于 1/(2n^{1/2})$。这很尖锐,概括了卡梅隆-科恩(Cameron-Cohen)和古拉尼克-万(Guralnick-Wan)的边界,并在很大程度上解决了古拉尼克-铁普(Guralnick-Tiep)的一个猜想。我们还给出了有限域上变项覆盖的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Derangements in non-Frobenius groups
We prove that if $G$ is a transitive permutation group of sufficiently large degree $n$, then either $G$ is primitive and Frobenius, or the proportion of derangements in $G$ is larger than $1/(2n^{1/2})$. This is sharp, generalizes substantially bounds of Cameron--Cohen and Guralnick--Wan, and settles a conjecture of Guralnick--Tiep in large degree. We also give an application to coverings of varieties over finite fields.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信