{"title":"关于半群$\\mathscr{C}_{+}(a,b)$和$\\mathscr{C}_{-}(a,b)$上有邻接零的局部紧凑移位连续拓扑学","authors":"Oleg Gutik","doi":"arxiv-2409.03490","DOIUrl":null,"url":null,"abstract":"Let $\\mathscr{C}_{+}(p,q)^0$ and $\\mathscr{C}_{-}(p,q)^0$ be the semigroups\n$\\mathscr{C}_{+}(a,b)$ and $\\mathscr{C}_{-}(a,b)$ with the adjoined zero. We\nshow that the semigroups $\\mathscr{C}_{+}(p,q)^0$ and $\\mathscr{C}_{-}(p,q)^0$\nadmit continuum many different Hausdorff locally compact shift-continuous\ntopologies up to topological isomorphism.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On locally compact shift-continuous topologies on semigroups $\\\\mathscr{C}_{+}(a,b)$ and $\\\\mathscr{C}_{-}(a,b)$ with adjoined zero\",\"authors\":\"Oleg Gutik\",\"doi\":\"arxiv-2409.03490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\mathscr{C}_{+}(p,q)^0$ and $\\\\mathscr{C}_{-}(p,q)^0$ be the semigroups\\n$\\\\mathscr{C}_{+}(a,b)$ and $\\\\mathscr{C}_{-}(a,b)$ with the adjoined zero. We\\nshow that the semigroups $\\\\mathscr{C}_{+}(p,q)^0$ and $\\\\mathscr{C}_{-}(p,q)^0$\\nadmit continuum many different Hausdorff locally compact shift-continuous\\ntopologies up to topological isomorphism.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On locally compact shift-continuous topologies on semigroups $\mathscr{C}_{+}(a,b)$ and $\mathscr{C}_{-}(a,b)$ with adjoined zero
Let $\mathscr{C}_{+}(p,q)^0$ and $\mathscr{C}_{-}(p,q)^0$ be the semigroups
$\mathscr{C}_{+}(a,b)$ and $\mathscr{C}_{-}(a,b)$ with the adjoined zero. We
show that the semigroups $\mathscr{C}_{+}(p,q)^0$ and $\mathscr{C}_{-}(p,q)^0$
admit continuum many different Hausdorff locally compact shift-continuous
topologies up to topological isomorphism.