随机波动模型的依赖特性

IF 1.2 4区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Piotr Kokoszka, Neda Mohammadi, Haonan Wang
{"title":"随机波动模型的依赖特性","authors":"Piotr Kokoszka, Neda Mohammadi, Haonan Wang","doi":"10.1111/jtsa.12765","DOIUrl":null,"url":null,"abstract":"The concepts of physical dependence and approximability have been extensively used over the past two decades to quantify nonlinear dependence in time series. We show that most stochastic volatility models satisfy both dependence conditions, even if their realizations take values in abstract Hilbert spaces, thus covering univariate, multi‐variate and functional models. Our results can be used to apply to general stochastic volatility models a multitude of inferential procedures established for Bernoulli shifts.","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"25 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dependence properties of stochastic volatility models\",\"authors\":\"Piotr Kokoszka, Neda Mohammadi, Haonan Wang\",\"doi\":\"10.1111/jtsa.12765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concepts of physical dependence and approximability have been extensively used over the past two decades to quantify nonlinear dependence in time series. We show that most stochastic volatility models satisfy both dependence conditions, even if their realizations take values in abstract Hilbert spaces, thus covering univariate, multi‐variate and functional models. Our results can be used to apply to general stochastic volatility models a multitude of inferential procedures established for Bernoulli shifts.\",\"PeriodicalId\":49973,\"journal\":{\"name\":\"Journal of Time Series Analysis\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Time Series Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/jtsa.12765\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/jtsa.12765","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

过去二十年来,物理依赖性和近似性的概念被广泛用于量化时间序列中的非线性依赖性。我们的研究表明,大多数随机波动模型都满足这两个依赖条件,即使它们的实现值是在抽象的希尔伯特空间中,从而涵盖了单变量、多变量和函数模型。我们的结果可用于将为伯努利变换建立的多种推论程序应用于一般随机波动模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dependence properties of stochastic volatility models
The concepts of physical dependence and approximability have been extensively used over the past two decades to quantify nonlinear dependence in time series. We show that most stochastic volatility models satisfy both dependence conditions, even if their realizations take values in abstract Hilbert spaces, thus covering univariate, multi‐variate and functional models. Our results can be used to apply to general stochastic volatility models a multitude of inferential procedures established for Bernoulli shifts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Time Series Analysis
Journal of Time Series Analysis 数学-数学跨学科应用
CiteScore
2.00
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering. The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信