{"title":"随机波动模型的依赖特性","authors":"Piotr Kokoszka, Neda Mohammadi, Haonan Wang","doi":"10.1111/jtsa.12765","DOIUrl":null,"url":null,"abstract":"The concepts of physical dependence and approximability have been extensively used over the past two decades to quantify nonlinear dependence in time series. We show that most stochastic volatility models satisfy both dependence conditions, even if their realizations take values in abstract Hilbert spaces, thus covering univariate, multi‐variate and functional models. Our results can be used to apply to general stochastic volatility models a multitude of inferential procedures established for Bernoulli shifts.","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"25 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dependence properties of stochastic volatility models\",\"authors\":\"Piotr Kokoszka, Neda Mohammadi, Haonan Wang\",\"doi\":\"10.1111/jtsa.12765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concepts of physical dependence and approximability have been extensively used over the past two decades to quantify nonlinear dependence in time series. We show that most stochastic volatility models satisfy both dependence conditions, even if their realizations take values in abstract Hilbert spaces, thus covering univariate, multi‐variate and functional models. Our results can be used to apply to general stochastic volatility models a multitude of inferential procedures established for Bernoulli shifts.\",\"PeriodicalId\":49973,\"journal\":{\"name\":\"Journal of Time Series Analysis\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Time Series Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/jtsa.12765\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/jtsa.12765","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Dependence properties of stochastic volatility models
The concepts of physical dependence and approximability have been extensively used over the past two decades to quantify nonlinear dependence in time series. We show that most stochastic volatility models satisfy both dependence conditions, even if their realizations take values in abstract Hilbert spaces, thus covering univariate, multi‐variate and functional models. Our results can be used to apply to general stochastic volatility models a multitude of inferential procedures established for Bernoulli shifts.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.