{"title":"估计卡特积希尔伯特空间中 Lp-m 近似过程的滞后(交叉)协方差算子","authors":"Sebastian Kühnert","doi":"10.1111/jtsa.12772","DOIUrl":null,"url":null,"abstract":"Estimating parameters of functional ARMA, GARCH and invertible processes requires estimating lagged covariance and cross‐covariance operators of Cartesian product Hilbert space‐valued processes. Asymptotic results have been derived in recent years, either less generally or under a strict condition. This article derives upper bounds of the estimation errors for such operators based on the mild condition ‐‐approximability for each lag, Cartesian power(s) and sample size, where the two processes can take values in different spaces in the context of lagged cross‐covariance operators. Implications of our results on eigen elements and parameters in functional AR(MA) models are also discussed.","PeriodicalId":49973,"journal":{"name":"Journal of Time Series Analysis","volume":"1 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating lagged (cross‐)covariance operators of Lp‐m‐approximable processes in cartesian product hilbert spaces\",\"authors\":\"Sebastian Kühnert\",\"doi\":\"10.1111/jtsa.12772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating parameters of functional ARMA, GARCH and invertible processes requires estimating lagged covariance and cross‐covariance operators of Cartesian product Hilbert space‐valued processes. Asymptotic results have been derived in recent years, either less generally or under a strict condition. This article derives upper bounds of the estimation errors for such operators based on the mild condition ‐‐approximability for each lag, Cartesian power(s) and sample size, where the two processes can take values in different spaces in the context of lagged cross‐covariance operators. Implications of our results on eigen elements and parameters in functional AR(MA) models are also discussed.\",\"PeriodicalId\":49973,\"journal\":{\"name\":\"Journal of Time Series Analysis\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Time Series Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/jtsa.12772\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Time Series Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/jtsa.12772","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Estimating lagged (cross‐)covariance operators of Lp‐m‐approximable processes in cartesian product hilbert spaces
Estimating parameters of functional ARMA, GARCH and invertible processes requires estimating lagged covariance and cross‐covariance operators of Cartesian product Hilbert space‐valued processes. Asymptotic results have been derived in recent years, either less generally or under a strict condition. This article derives upper bounds of the estimation errors for such operators based on the mild condition ‐‐approximability for each lag, Cartesian power(s) and sample size, where the two processes can take values in different spaces in the context of lagged cross‐covariance operators. Implications of our results on eigen elements and parameters in functional AR(MA) models are also discussed.
期刊介绍:
During the last 30 years Time Series Analysis has become one of the most important and widely used branches of Mathematical Statistics. Its fields of application range from neurophysiology to astrophysics and it covers such well-known areas as economic forecasting, study of biological data, control systems, signal processing and communications and vibrations engineering.
The Journal of Time Series Analysis started in 1980, has since become the leading journal in its field, publishing papers on both fundamental theory and applications, as well as review papers dealing with recent advances in major areas of the subject and short communications on theoretical developments. The editorial board consists of many of the world''s leading experts in Time Series Analysis.