{"title":"分类时间序列的加权离散 ARMA 模型","authors":"Christian H. Weiß, Osama Swidan","doi":"10.1111/jtsa.12773","DOIUrl":null,"url":null,"abstract":"A new and flexible class of ARMA‐like (autoregressive moving average) models for nominal or ordinal time series is proposed, which are characterized by using so‐called weighting operators and are, thus, referred to as weighted discrete ARMA (WDARMA) models. By choosing an appropriate type of weighting operator, one can model, for example, nominal time series with negative serial dependencies, or ordinal time series where transitions to neighboring states are more likely than sudden large jumps. Essential stochastic properties of WDARMA models are derived, such as the existence of a stationary, ergodic, and ‐mixing solution as well as closed‐form formulae for marginal and bivariate probabilities. Numerical illustrations as well as simulation experiments regarding the finite‐sample performance of maximum likelihood estimation are presented. The possible benefits of using an appropriate weighting scheme within the WDARMA class are demonstrated by a real‐world data application.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weighted discrete ARMA models for categorical time series\",\"authors\":\"Christian H. Weiß, Osama Swidan\",\"doi\":\"10.1111/jtsa.12773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new and flexible class of ARMA‐like (autoregressive moving average) models for nominal or ordinal time series is proposed, which are characterized by using so‐called weighting operators and are, thus, referred to as weighted discrete ARMA (WDARMA) models. By choosing an appropriate type of weighting operator, one can model, for example, nominal time series with negative serial dependencies, or ordinal time series where transitions to neighboring states are more likely than sudden large jumps. Essential stochastic properties of WDARMA models are derived, such as the existence of a stationary, ergodic, and ‐mixing solution as well as closed‐form formulae for marginal and bivariate probabilities. Numerical illustrations as well as simulation experiments regarding the finite‐sample performance of maximum likelihood estimation are presented. The possible benefits of using an appropriate weighting scheme within the WDARMA class are demonstrated by a real‐world data application.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/jtsa.12773\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/jtsa.12773","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Weighted discrete ARMA models for categorical time series
A new and flexible class of ARMA‐like (autoregressive moving average) models for nominal or ordinal time series is proposed, which are characterized by using so‐called weighting operators and are, thus, referred to as weighted discrete ARMA (WDARMA) models. By choosing an appropriate type of weighting operator, one can model, for example, nominal time series with negative serial dependencies, or ordinal time series where transitions to neighboring states are more likely than sudden large jumps. Essential stochastic properties of WDARMA models are derived, such as the existence of a stationary, ergodic, and ‐mixing solution as well as closed‐form formulae for marginal and bivariate probabilities. Numerical illustrations as well as simulation experiments regarding the finite‐sample performance of maximum likelihood estimation are presented. The possible benefits of using an appropriate weighting scheme within the WDARMA class are demonstrated by a real‐world data application.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.