Jonas BeyrerUNISTRA, Olivier GuichardUNISTRA, François LabourieUniCA, Beatrice Pozzetti, Anna Wienhard
{"title":"正向性、交叉比和项圈定理","authors":"Jonas BeyrerUNISTRA, Olivier GuichardUNISTRA, François LabourieUniCA, Beatrice Pozzetti, Anna Wienhard","doi":"arxiv-2409.06294","DOIUrl":null,"url":null,"abstract":"We prove that $\\Theta$-positive representations of fundamental groups of\nsurfaces (possibly cusped or of infinite type) satisfy a collar lemma, and\ntheir associated cross-ratios are positive. As a consequence we deduce that\n$\\Theta$-positive representations form closed subsets of the representation\nvariety.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positivity, cross-ratios and the Collar Lemma\",\"authors\":\"Jonas BeyrerUNISTRA, Olivier GuichardUNISTRA, François LabourieUniCA, Beatrice Pozzetti, Anna Wienhard\",\"doi\":\"arxiv-2409.06294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that $\\\\Theta$-positive representations of fundamental groups of\\nsurfaces (possibly cusped or of infinite type) satisfy a collar lemma, and\\ntheir associated cross-ratios are positive. As a consequence we deduce that\\n$\\\\Theta$-positive representations form closed subsets of the representation\\nvariety.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We prove that $\Theta$-positive representations of fundamental groups of
surfaces (possibly cusped or of infinite type) satisfy a collar lemma, and
their associated cross-ratios are positive. As a consequence we deduce that
$\Theta$-positive representations form closed subsets of the representation
variety.