正向性、交叉比和项圈定理

Jonas BeyrerUNISTRA, Olivier GuichardUNISTRA, François LabourieUniCA, Beatrice Pozzetti, Anna Wienhard
{"title":"正向性、交叉比和项圈定理","authors":"Jonas BeyrerUNISTRA, Olivier GuichardUNISTRA, François LabourieUniCA, Beatrice Pozzetti, Anna Wienhard","doi":"arxiv-2409.06294","DOIUrl":null,"url":null,"abstract":"We prove that $\\Theta$-positive representations of fundamental groups of\nsurfaces (possibly cusped or of infinite type) satisfy a collar lemma, and\ntheir associated cross-ratios are positive. As a consequence we deduce that\n$\\Theta$-positive representations form closed subsets of the representation\nvariety.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positivity, cross-ratios and the Collar Lemma\",\"authors\":\"Jonas BeyrerUNISTRA, Olivier GuichardUNISTRA, François LabourieUniCA, Beatrice Pozzetti, Anna Wienhard\",\"doi\":\"arxiv-2409.06294\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that $\\\\Theta$-positive representations of fundamental groups of\\nsurfaces (possibly cusped or of infinite type) satisfy a collar lemma, and\\ntheir associated cross-ratios are positive. As a consequence we deduce that\\n$\\\\Theta$-positive representations form closed subsets of the representation\\nvariety.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06294\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了曲面(可能是尖顶曲面或无限型曲面)基本群的$\theta$正表示满足项圈lemma,并且它们相关的交叉比是正的。因此,我们推导出$heta$正表示形成了表示范围的封闭子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positivity, cross-ratios and the Collar Lemma
We prove that $\Theta$-positive representations of fundamental groups of surfaces (possibly cusped or of infinite type) satisfy a collar lemma, and their associated cross-ratios are positive. As a consequence we deduce that $\Theta$-positive representations form closed subsets of the representation variety.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信