高阶网格的正熵作用

Aaron Brown, Homin Lee
{"title":"高阶网格的正熵作用","authors":"Aaron Brown, Homin Lee","doi":"arxiv-2409.05991","DOIUrl":null,"url":null,"abstract":"We study smooth actions by lattices $\\Gamma$ in higher-rank simple Lie groups\n$G$ assuming one element of the action acts with positive topological entropy\nand prove a number of new rigidity results. For lattices $\\Gamma$ in\n$\\mathrm{SL}(n,\\mathbb{R})$ acting on $n$-manifolds, if the action has positive\ntopological entropy we show the lattice must be commensurable with\n$\\mathrm{SL}(n,\\mathbb{Z})$. Moreover, such actions admit an absolutely\ncontinuous probability measure with positive metric entropy; adapting arguments\nby Katok and Rodriguez Hertz, we show such actions are measurably conjugate to\naffine actions on (infra)tori. In our main technical arguments, we study families of probability measures\ninvariant under sub-actions of the induced $G$-action on an associated fiber\nbundle. To control entropy properties of such measures, in the appendix we\nestablish certain upper semicontinuity of entropy under weak-$*$ convergence,\nadapting classical results of Yomdin and Newhouse.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive entropy actions by higher-rank lattices\",\"authors\":\"Aaron Brown, Homin Lee\",\"doi\":\"arxiv-2409.05991\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study smooth actions by lattices $\\\\Gamma$ in higher-rank simple Lie groups\\n$G$ assuming one element of the action acts with positive topological entropy\\nand prove a number of new rigidity results. For lattices $\\\\Gamma$ in\\n$\\\\mathrm{SL}(n,\\\\mathbb{R})$ acting on $n$-manifolds, if the action has positive\\ntopological entropy we show the lattice must be commensurable with\\n$\\\\mathrm{SL}(n,\\\\mathbb{Z})$. Moreover, such actions admit an absolutely\\ncontinuous probability measure with positive metric entropy; adapting arguments\\nby Katok and Rodriguez Hertz, we show such actions are measurably conjugate to\\naffine actions on (infra)tori. In our main technical arguments, we study families of probability measures\\ninvariant under sub-actions of the induced $G$-action on an associated fiber\\nbundle. To control entropy properties of such measures, in the appendix we\\nestablish certain upper semicontinuity of entropy under weak-$*$ convergence,\\nadapting classical results of Yomdin and Newhouse.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05991\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了高阶简单李群$G$中$\Gamma$网格的光滑作用,假设作用的一个元素具有正拓扑熵,并证明了一些新的刚性结果。对于作用于$n$-manifolds的$mathrm{SL}(n,\mathbb{R})$中的$\Gamma$网格,如果作用具有正拓扑熵,我们证明了该网格必须与$mathrm{SL}(n,\mathbb{Z})$可共轭。此外,这样的作用允许一个具有正度量熵的绝对连续概率度量;根据卡托克和罗德里格斯-赫兹的论证,我们证明了这样的作用与(下)环上的非线性作用是可测共轭的。在我们的主要技术论证中,我们研究了在相关纤维束上的诱导 $G$ 作用的子作用下不变的概率计量族。为了控制这些度量的熵属性,我们在附录中根据约姆丁和纽豪斯的经典结果,建立了弱$*$收敛下熵的某些上半连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Positive entropy actions by higher-rank lattices
We study smooth actions by lattices $\Gamma$ in higher-rank simple Lie groups $G$ assuming one element of the action acts with positive topological entropy and prove a number of new rigidity results. For lattices $\Gamma$ in $\mathrm{SL}(n,\mathbb{R})$ acting on $n$-manifolds, if the action has positive topological entropy we show the lattice must be commensurable with $\mathrm{SL}(n,\mathbb{Z})$. Moreover, such actions admit an absolutely continuous probability measure with positive metric entropy; adapting arguments by Katok and Rodriguez Hertz, we show such actions are measurably conjugate to affine actions on (infra)tori. In our main technical arguments, we study families of probability measures invariant under sub-actions of the induced $G$-action on an associated fiber bundle. To control entropy properties of such measures, in the appendix we establish certain upper semicontinuity of entropy under weak-$*$ convergence, adapting classical results of Yomdin and Newhouse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信