用两个周期元素生成扩展映射类群

Reid Harris
{"title":"用两个周期元素生成扩展映射类群","authors":"Reid Harris","doi":"arxiv-2409.06350","DOIUrl":null,"url":null,"abstract":"The extended mapping class group of a surface $\\Sigma$ is defined to be the\ngroup of isotopy classes of (not necessarily orientation-preserving)\nhomeomorphisms of $\\Sigma$. We are able to show that the extended mapping class\ngroup of an $n$-punctured sphere is generated by two elements of finite order\nexactly when $n\\not=4$. We use this result to prove that the extended mapping\nclass group of a genus 2 surface is generated by two elements of finite order.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating Extended Mapping Class Groups with Two Periodic Elements\",\"authors\":\"Reid Harris\",\"doi\":\"arxiv-2409.06350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extended mapping class group of a surface $\\\\Sigma$ is defined to be the\\ngroup of isotopy classes of (not necessarily orientation-preserving)\\nhomeomorphisms of $\\\\Sigma$. We are able to show that the extended mapping class\\ngroup of an $n$-punctured sphere is generated by two elements of finite order\\nexactly when $n\\\\not=4$. We use this result to prove that the extended mapping\\nclass group of a genus 2 surface is generated by two elements of finite order.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06350\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06350","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

曲面 $\Sigma$ 的扩展映射类群被定义为 $\Sigma$ 的(不一定是保向的)同构的同位类群。我们能够证明,当 $n\not=4$ 时,$n$-穿孔球面的扩展映射类群由两个有限序元素精确地生成。我们利用这一结果证明了属 2 曲面的扩展映射类群是由两个有限阶元素生成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Extended Mapping Class Groups with Two Periodic Elements
The extended mapping class group of a surface $\Sigma$ is defined to be the group of isotopy classes of (not necessarily orientation-preserving) homeomorphisms of $\Sigma$. We are able to show that the extended mapping class group of an $n$-punctured sphere is generated by two elements of finite order exactly when $n\not=4$. We use this result to prove that the extended mapping class group of a genus 2 surface is generated by two elements of finite order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信