直角阿尔丁群有理特征的内核表述

Montserrat Casals-Ruiz, Ilya Kazachkov, Mallika Roy
{"title":"直角阿尔丁群有理特征的内核表述","authors":"Montserrat Casals-Ruiz, Ilya Kazachkov, Mallika Roy","doi":"arxiv-2409.06315","DOIUrl":null,"url":null,"abstract":"In this note, we characterise when the kernel of a rational character of a\nright-anlged Artin group, also known as generalised Bestiva-Brady group, is\nfinitely generated and finitely presented. In these cases, we exhibit a finite\ngenerating set and a presentation. These results generalise Dicks and Leary's\npresentations of Bestina-Brady kernels and provide an algebraic proof for the\nresults proven by Meier, Meinert, and VanWyk.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Presentation of kernels of rational characters of right-angled Artin groups\",\"authors\":\"Montserrat Casals-Ruiz, Ilya Kazachkov, Mallika Roy\",\"doi\":\"arxiv-2409.06315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this note, we characterise when the kernel of a rational character of a\\nright-anlged Artin group, also known as generalised Bestiva-Brady group, is\\nfinitely generated and finitely presented. In these cases, we exhibit a finite\\ngenerating set and a presentation. These results generalise Dicks and Leary's\\npresentations of Bestina-Brady kernels and provide an algebraic proof for the\\nresults proven by Meier, Meinert, and VanWyk.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本论文中,我们描述了有理性质的阿尔丁群(又称广义贝斯特瓦-布拉迪群)的内核是无限生成和有限呈现的情况。在这些情况下,我们展示了有限生成集和有限呈现。这些结果概括了 Dicks 和 Leary 对 Bestina-Brady 核的呈现,并为 Meier、Meinert 和 VanWyk 所证明的结果提供了代数证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Presentation of kernels of rational characters of right-angled Artin groups
In this note, we characterise when the kernel of a rational character of a right-anlged Artin group, also known as generalised Bestiva-Brady group, is finitely generated and finitely presented. In these cases, we exhibit a finite generating set and a presentation. These results generalise Dicks and Leary's presentations of Bestina-Brady kernels and provide an algebraic proof for the results proven by Meier, Meinert, and VanWyk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信