可容许曲线图的层次双曲性和标记层的边界

Aaron Calderon, Jacob Russell
{"title":"可容许曲线图的层次双曲性和标记层的边界","authors":"Aaron Calderon, Jacob Russell","doi":"arxiv-2409.06798","DOIUrl":null,"url":null,"abstract":"We show that for any surface of genus at least 3 equipped with any choice of\nframing, the graph of non-separating curves with winding number 0 with respect\nto the framing is hierarchically hyperbolic but not Gromov hyperbolic. We also\ndescribe how to build analogues of the curve graph for marked strata of abelian\ndifferentials that capture the combinatorics of their boundaries, analogous to\nhow the curve graph captures the combinatorics of the augmented Teichmueller\nspace. These curve graph analogues are also shown to be hierarchically, but not\nGromov, hyperbolic.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hierarchical hyperbolicity of admissible curve graphs and the boundary of marked strata\",\"authors\":\"Aaron Calderon, Jacob Russell\",\"doi\":\"arxiv-2409.06798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that for any surface of genus at least 3 equipped with any choice of\\nframing, the graph of non-separating curves with winding number 0 with respect\\nto the framing is hierarchically hyperbolic but not Gromov hyperbolic. We also\\ndescribe how to build analogues of the curve graph for marked strata of abelian\\ndifferentials that capture the combinatorics of their boundaries, analogous to\\nhow the curve graph captures the combinatorics of the augmented Teichmueller\\nspace. These curve graph analogues are also shown to be hierarchically, but not\\nGromov, hyperbolic.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于任何至少 3 属的曲面,如果配备任意选择的边框,则与边框相关的缠绕数为 0 的非分离曲线图是层次双曲的,但不是格罗莫夫双曲的。我们还描述了如何为abeliandifferentials 的标记层建立曲线图的类似图,以捕捉其边界的组合学,类似于曲线图捕捉增强的 Teichmuellers 空间的组合学。这些曲线图类似物也被证明是层次双曲的,但不是格罗莫夫双曲的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical hyperbolicity of admissible curve graphs and the boundary of marked strata
We show that for any surface of genus at least 3 equipped with any choice of framing, the graph of non-separating curves with winding number 0 with respect to the framing is hierarchically hyperbolic but not Gromov hyperbolic. We also describe how to build analogues of the curve graph for marked strata of abelian differentials that capture the combinatorics of their boundaries, analogous to how the curve graph captures the combinatorics of the augmented Teichmueller space. These curve graph analogues are also shown to be hierarchically, but not Gromov, hyperbolic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信