论具有紧凑最大子群的半拓扑简单逆ω$半群

Oleg Gutik, Kateryna Maksymyk
{"title":"论具有紧凑最大子群的半拓扑简单逆ω$半群","authors":"Oleg Gutik, Kateryna Maksymyk","doi":"arxiv-2409.06344","DOIUrl":null,"url":null,"abstract":"We describe the structure of simple inverse Hausdorff semitopological\n$\\omega$-semigroups with compact maximal subgroups. In particular we show that\nif $S$ is a simple inverse Hausdorff semitopological $\\omega$-semigroups with\ncompact maximal subgroups, then $S$ is topologically isomorphic to the\nBruck--Reilly extension\n$\\left(\\textbf{BR}(T,\\theta),\\tau_{\\textbf{BR}}^{\\oplus}\\right)$ of a finite\nsemilattice $T=\\left[E;G_\\alpha,\\varphi_{\\alpha,\\beta}\\right]$ of compact\ngroups $G_\\alpha$ in the class of topological inverse semigroups, where\n$\\tau_{\\textbf{BR}}^{\\oplus}$ is the sum direct topology on\n$\\textbf{BR}(T,\\theta)$. Also we prove that every Hausdorff locally compact\nshift-continuous topology on the simple inverse Hausdorff semitopological\n$\\omega$-semigroups with compact maximal subgroups with adjoined zero is either\ncompact or discrete.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On semitopological simple inverse $ω$-semigroups with compact maximal subgroups\",\"authors\":\"Oleg Gutik, Kateryna Maksymyk\",\"doi\":\"arxiv-2409.06344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the structure of simple inverse Hausdorff semitopological\\n$\\\\omega$-semigroups with compact maximal subgroups. In particular we show that\\nif $S$ is a simple inverse Hausdorff semitopological $\\\\omega$-semigroups with\\ncompact maximal subgroups, then $S$ is topologically isomorphic to the\\nBruck--Reilly extension\\n$\\\\left(\\\\textbf{BR}(T,\\\\theta),\\\\tau_{\\\\textbf{BR}}^{\\\\oplus}\\\\right)$ of a finite\\nsemilattice $T=\\\\left[E;G_\\\\alpha,\\\\varphi_{\\\\alpha,\\\\beta}\\\\right]$ of compact\\ngroups $G_\\\\alpha$ in the class of topological inverse semigroups, where\\n$\\\\tau_{\\\\textbf{BR}}^{\\\\oplus}$ is the sum direct topology on\\n$\\\\textbf{BR}(T,\\\\theta)$. Also we prove that every Hausdorff locally compact\\nshift-continuous topology on the simple inverse Hausdorff semitopological\\n$\\\\omega$-semigroups with compact maximal subgroups with adjoined zero is either\\ncompact or discrete.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们描述了具有紧凑最大子群的简单反豪斯多夫半拓扑$\omega$-半群的结构。我们特别指出,如果$S$是一个具有紧凑最大子群的简单反豪斯多夫半拓扑$\omega$半群,那么$S$在拓扑上与有限半网格$T=left[E. G_\alpha,\varphi_{BR}}^{\oplus}\right)$ 的布鲁克--雷利扩展$left(\textbf{BR}(T,\theta),\tau_{\textbf{BR}}^{\oplus}/right)$同构;其中$tau_{\textbf{BR}}^\{oplus}$是$textbf{BR}(T,\theta)$上的和直接拓扑。此外,我们还证明了在简单的反豪斯多夫半拓扑$\omega$-半群上的每一个豪斯多夫局部紧凑移相续拓扑都是紧凑的或离散的,而这些半群都是紧凑的最大子群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On semitopological simple inverse $ω$-semigroups with compact maximal subgroups
We describe the structure of simple inverse Hausdorff semitopological $\omega$-semigroups with compact maximal subgroups. In particular we show that if $S$ is a simple inverse Hausdorff semitopological $\omega$-semigroups with compact maximal subgroups, then $S$ is topologically isomorphic to the Bruck--Reilly extension $\left(\textbf{BR}(T,\theta),\tau_{\textbf{BR}}^{\oplus}\right)$ of a finite semilattice $T=\left[E;G_\alpha,\varphi_{\alpha,\beta}\right]$ of compact groups $G_\alpha$ in the class of topological inverse semigroups, where $\tau_{\textbf{BR}}^{\oplus}$ is the sum direct topology on $\textbf{BR}(T,\theta)$. Also we prove that every Hausdorff locally compact shift-continuous topology on the simple inverse Hausdorff semitopological $\omega$-semigroups with compact maximal subgroups with adjoined zero is either compact or discrete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信