{"title":"论具有紧凑最大子群的半拓扑简单逆ω$半群","authors":"Oleg Gutik, Kateryna Maksymyk","doi":"arxiv-2409.06344","DOIUrl":null,"url":null,"abstract":"We describe the structure of simple inverse Hausdorff semitopological\n$\\omega$-semigroups with compact maximal subgroups. In particular we show that\nif $S$ is a simple inverse Hausdorff semitopological $\\omega$-semigroups with\ncompact maximal subgroups, then $S$ is topologically isomorphic to the\nBruck--Reilly extension\n$\\left(\\textbf{BR}(T,\\theta),\\tau_{\\textbf{BR}}^{\\oplus}\\right)$ of a finite\nsemilattice $T=\\left[E;G_\\alpha,\\varphi_{\\alpha,\\beta}\\right]$ of compact\ngroups $G_\\alpha$ in the class of topological inverse semigroups, where\n$\\tau_{\\textbf{BR}}^{\\oplus}$ is the sum direct topology on\n$\\textbf{BR}(T,\\theta)$. Also we prove that every Hausdorff locally compact\nshift-continuous topology on the simple inverse Hausdorff semitopological\n$\\omega$-semigroups with compact maximal subgroups with adjoined zero is either\ncompact or discrete.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On semitopological simple inverse $ω$-semigroups with compact maximal subgroups\",\"authors\":\"Oleg Gutik, Kateryna Maksymyk\",\"doi\":\"arxiv-2409.06344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe the structure of simple inverse Hausdorff semitopological\\n$\\\\omega$-semigroups with compact maximal subgroups. In particular we show that\\nif $S$ is a simple inverse Hausdorff semitopological $\\\\omega$-semigroups with\\ncompact maximal subgroups, then $S$ is topologically isomorphic to the\\nBruck--Reilly extension\\n$\\\\left(\\\\textbf{BR}(T,\\\\theta),\\\\tau_{\\\\textbf{BR}}^{\\\\oplus}\\\\right)$ of a finite\\nsemilattice $T=\\\\left[E;G_\\\\alpha,\\\\varphi_{\\\\alpha,\\\\beta}\\\\right]$ of compact\\ngroups $G_\\\\alpha$ in the class of topological inverse semigroups, where\\n$\\\\tau_{\\\\textbf{BR}}^{\\\\oplus}$ is the sum direct topology on\\n$\\\\textbf{BR}(T,\\\\theta)$. Also we prove that every Hausdorff locally compact\\nshift-continuous topology on the simple inverse Hausdorff semitopological\\n$\\\\omega$-semigroups with compact maximal subgroups with adjoined zero is either\\ncompact or discrete.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On semitopological simple inverse $ω$-semigroups with compact maximal subgroups
We describe the structure of simple inverse Hausdorff semitopological
$\omega$-semigroups with compact maximal subgroups. In particular we show that
if $S$ is a simple inverse Hausdorff semitopological $\omega$-semigroups with
compact maximal subgroups, then $S$ is topologically isomorphic to the
Bruck--Reilly extension
$\left(\textbf{BR}(T,\theta),\tau_{\textbf{BR}}^{\oplus}\right)$ of a finite
semilattice $T=\left[E;G_\alpha,\varphi_{\alpha,\beta}\right]$ of compact
groups $G_\alpha$ in the class of topological inverse semigroups, where
$\tau_{\textbf{BR}}^{\oplus}$ is the sum direct topology on
$\textbf{BR}(T,\theta)$. Also we prove that every Hausdorff locally compact
shift-continuous topology on the simple inverse Hausdorff semitopological
$\omega$-semigroups with compact maximal subgroups with adjoined zero is either
compact or discrete.