{"title":"GL$(2, q)$ 的完全还原循环子群的共轭类","authors":"Prashun Kumar, Geetha Venkataraman","doi":"arxiv-2409.07244","DOIUrl":null,"url":null,"abstract":"Let $m$ be a positive integer such that $p$ does not divide $m$ where $p$ is\nprime. In this paper we find the number of conjugacy classes of completely\nreducible cyclic subgroups in GL$(2, q)$ of order $m$, where $q$ is a power of\n$p$.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conjugacy classes of completely reducible cyclic subgroups of GL$(2, q)$\",\"authors\":\"Prashun Kumar, Geetha Venkataraman\",\"doi\":\"arxiv-2409.07244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $m$ be a positive integer such that $p$ does not divide $m$ where $p$ is\\nprime. In this paper we find the number of conjugacy classes of completely\\nreducible cyclic subgroups in GL$(2, q)$ of order $m$, where $q$ is a power of\\n$p$.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conjugacy classes of completely reducible cyclic subgroups of GL$(2, q)$
Let $m$ be a positive integer such that $p$ does not divide $m$ where $p$ is
prime. In this paper we find the number of conjugacy classes of completely
reducible cyclic subgroups in GL$(2, q)$ of order $m$, where $q$ is a power of
$p$.