半简单李群 K 有限矩阵系数的规律性

Guillaume Dumas
{"title":"半简单李群 K 有限矩阵系数的规律性","authors":"Guillaume Dumas","doi":"arxiv-2409.07944","DOIUrl":null,"url":null,"abstract":"We consider $G$ a semisimple Lie group with finite center and $K$ a maximal\ncompact subgroup of $G$. We study the regularity of $K$-finite matrix\ncoefficients of unitary representations of $G$. More precisely, we find the\noptimal value $\\kappa(G)$ such that all such coefficients are\n$\\kappa(G)$-H\\\"older continuous. The proof relies on analysis of spherical\nfunctions of the symmetric Gelfand pair $(G,K)$, using stationary phase\nestimates from Duistermaat, Kolk and Varadarajan. If $U$ is a compact form of\n$G$, then $(U,K)$ is a compact symmetric pair. Using the same tools, we study\nthe regularity of $K$-finite coefficients of unitary representations of $U$,\nimproving on previous results obtained by the author.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regularity of K-finite matrix coefficients of semisimple Lie groups\",\"authors\":\"Guillaume Dumas\",\"doi\":\"arxiv-2409.07944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider $G$ a semisimple Lie group with finite center and $K$ a maximal\\ncompact subgroup of $G$. We study the regularity of $K$-finite matrix\\ncoefficients of unitary representations of $G$. More precisely, we find the\\noptimal value $\\\\kappa(G)$ such that all such coefficients are\\n$\\\\kappa(G)$-H\\\\\\\"older continuous. The proof relies on analysis of spherical\\nfunctions of the symmetric Gelfand pair $(G,K)$, using stationary phase\\nestimates from Duistermaat, Kolk and Varadarajan. If $U$ is a compact form of\\n$G$, then $(U,K)$ is a compact symmetric pair. Using the same tools, we study\\nthe regularity of $K$-finite coefficients of unitary representations of $U$,\\nimproving on previous results obtained by the author.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们认为 $G$ 是一个具有有限中心的半简单李群,而 $K$ 是 $G$ 的一个最大紧凑子群。我们研究 $G$ 单元代表的 $K$ 有限矩阵系数的正则性。更准确地说,我们找到了最优值 $k/kappa(G)$,使得所有这些系数都是$k/kappa(G)$-H\"older连续的。证明依赖于对对称格尔方对 $(G,K)$的球面函数的分析,并使用了杜斯特马特、科尔克和瓦拉达拉詹的静态相位估计。如果$U$是$G$的紧凑形式,那么$(U,K)$就是紧凑对称对。利用同样的工具,我们研究了 $U$ 单位表示的 $K$ 无限系数的正则性,改进了作者以前获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regularity of K-finite matrix coefficients of semisimple Lie groups
We consider $G$ a semisimple Lie group with finite center and $K$ a maximal compact subgroup of $G$. We study the regularity of $K$-finite matrix coefficients of unitary representations of $G$. More precisely, we find the optimal value $\kappa(G)$ such that all such coefficients are $\kappa(G)$-H\"older continuous. The proof relies on analysis of spherical functions of the symmetric Gelfand pair $(G,K)$, using stationary phase estimates from Duistermaat, Kolk and Varadarajan. If $U$ is a compact form of $G$, then $(U,K)$ is a compact symmetric pair. Using the same tools, we study the regularity of $K$-finite coefficients of unitary representations of $U$, improving on previous results obtained by the author.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信