认证阿诺索夫陈述

J. Maxwell Riestenberg
{"title":"认证阿诺索夫陈述","authors":"J. Maxwell Riestenberg","doi":"arxiv-2409.08015","DOIUrl":null,"url":null,"abstract":"By providing new finite criteria which certify that a finitely generated\nsubgroup of $\\mathrm{SL}(d,\\mathbb{R})$ or $\\mathrm{SL}(d,\\mathbb{C})$ is\nprojective Anosov, we obtain a practical algorithm to verify the Anosov\ncondition. We demonstrate on a surface group of genus 2 in\n$\\mathrm{SL}(3,\\mathbb{R})$ by verifying the criteria for all words of length\n8. The previous version required checking all words of length $2$ million.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Certifying Anosov representations\",\"authors\":\"J. Maxwell Riestenberg\",\"doi\":\"arxiv-2409.08015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By providing new finite criteria which certify that a finitely generated\\nsubgroup of $\\\\mathrm{SL}(d,\\\\mathbb{R})$ or $\\\\mathrm{SL}(d,\\\\mathbb{C})$ is\\nprojective Anosov, we obtain a practical algorithm to verify the Anosov\\ncondition. We demonstrate on a surface group of genus 2 in\\n$\\\\mathrm{SL}(3,\\\\mathbb{R})$ by verifying the criteria for all words of length\\n8. The previous version required checking all words of length $2$ million.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过提供新的有限标准来证明$\mathrm{SL}(d,\mathbb{R})$ 或$\mathrm{SL}(d,\mathbb{C})$ 的有限生成子群是投影阿诺索夫,我们得到了验证阿诺索夫条件的实用算法。我们在$\mathrm{SL}(3,\mathbb{R})$ 中属2的表面组上演示了验证所有长度为8的词的标准。之前的版本需要验证所有长度为 200 万美元的词。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Certifying Anosov representations
By providing new finite criteria which certify that a finitely generated subgroup of $\mathrm{SL}(d,\mathbb{R})$ or $\mathrm{SL}(d,\mathbb{C})$ is projective Anosov, we obtain a practical algorithm to verify the Anosov condition. We demonstrate on a surface group of genus 2 in $\mathrm{SL}(3,\mathbb{R})$ by verifying the criteria for all words of length 8. The previous version required checking all words of length $2$ million.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信