{"title":"认证阿诺索夫陈述","authors":"J. Maxwell Riestenberg","doi":"arxiv-2409.08015","DOIUrl":null,"url":null,"abstract":"By providing new finite criteria which certify that a finitely generated\nsubgroup of $\\mathrm{SL}(d,\\mathbb{R})$ or $\\mathrm{SL}(d,\\mathbb{C})$ is\nprojective Anosov, we obtain a practical algorithm to verify the Anosov\ncondition. We demonstrate on a surface group of genus 2 in\n$\\mathrm{SL}(3,\\mathbb{R})$ by verifying the criteria for all words of length\n8. The previous version required checking all words of length $2$ million.","PeriodicalId":501037,"journal":{"name":"arXiv - MATH - Group Theory","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Certifying Anosov representations\",\"authors\":\"J. Maxwell Riestenberg\",\"doi\":\"arxiv-2409.08015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By providing new finite criteria which certify that a finitely generated\\nsubgroup of $\\\\mathrm{SL}(d,\\\\mathbb{R})$ or $\\\\mathrm{SL}(d,\\\\mathbb{C})$ is\\nprojective Anosov, we obtain a practical algorithm to verify the Anosov\\ncondition. We demonstrate on a surface group of genus 2 in\\n$\\\\mathrm{SL}(3,\\\\mathbb{R})$ by verifying the criteria for all words of length\\n8. The previous version required checking all words of length $2$ million.\",\"PeriodicalId\":501037,\"journal\":{\"name\":\"arXiv - MATH - Group Theory\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Group Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Group Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
By providing new finite criteria which certify that a finitely generated
subgroup of $\mathrm{SL}(d,\mathbb{R})$ or $\mathrm{SL}(d,\mathbb{C})$ is
projective Anosov, we obtain a practical algorithm to verify the Anosov
condition. We demonstrate on a surface group of genus 2 in
$\mathrm{SL}(3,\mathbb{R})$ by verifying the criteria for all words of length
8. The previous version required checking all words of length $2$ million.