准分裂几何近简代数群的周环

Alexey Ananyevskiy, Nikita Geldhauser
{"title":"准分裂几何近简代数群的周环","authors":"Alexey Ananyevskiy, Nikita Geldhauser","doi":"arxiv-2408.09390","DOIUrl":null,"url":null,"abstract":"We compute the Chow ring of a quasi-split geometrically almost simple\nalgebraic group assuming the coefficients to be a field. This extends the\nclassical computation for split groups done by Kac to the non-split quasi-split\ncase. For the proof we introduce and study equivariant conormed Chow rings,\nwhich are well adapted to the study of quasi-split groups and their homogeneous\nvarieties.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chow rings of quasi-split geometrically almost simple algebraic groups\",\"authors\":\"Alexey Ananyevskiy, Nikita Geldhauser\",\"doi\":\"arxiv-2408.09390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the Chow ring of a quasi-split geometrically almost simple\\nalgebraic group assuming the coefficients to be a field. This extends the\\nclassical computation for split groups done by Kac to the non-split quasi-split\\ncase. For the proof we introduce and study equivariant conormed Chow rings,\\nwhich are well adapted to the study of quasi-split groups and their homogeneous\\nvarieties.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们假定系数是一个域,计算准分裂几何近简代数群的周环。这将卡氏对分裂群的经典计算扩展到了非分裂的准分裂情形。为了证明这一点,我们引入并研究了等变共模周环,它非常适合研究准分裂群及其同素异形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chow rings of quasi-split geometrically almost simple algebraic groups
We compute the Chow ring of a quasi-split geometrically almost simple algebraic group assuming the coefficients to be a field. This extends the classical computation for split groups done by Kac to the non-split quasi-split case. For the proof we introduce and study equivariant conormed Chow rings, which are well adapted to the study of quasi-split groups and their homogeneous varieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信