论曲线代数的霍赫希尔德同调

Benjamin Briggs, Mark E. Walker
{"title":"论曲线代数的霍赫希尔德同调","authors":"Benjamin Briggs, Mark E. Walker","doi":"arxiv-2408.13334","DOIUrl":null,"url":null,"abstract":"We compute the Hochschild homology of the differential graded category of\nperfect curved modules over suitable curved rings, giving what might be termed\n\"de Rham models\" for such. This represents a generalization of previous results\nby Dyckerhoff, Efimov, Polishchuk, and Positselski concerning the Hochschild\nhomology of matrix factorizations. A key ingredient in the proof is a theorem\ndue to B. Briggs, which represents a \"curved version\" of a celebrated theorem\nof Hopkins and Neeman. The proof of Briggs' Theorem is included in an appendix\nto this paper.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Hochschild Homology of Curved Algebras\",\"authors\":\"Benjamin Briggs, Mark E. Walker\",\"doi\":\"arxiv-2408.13334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute the Hochschild homology of the differential graded category of\\nperfect curved modules over suitable curved rings, giving what might be termed\\n\\\"de Rham models\\\" for such. This represents a generalization of previous results\\nby Dyckerhoff, Efimov, Polishchuk, and Positselski concerning the Hochschild\\nhomology of matrix factorizations. A key ingredient in the proof is a theorem\\ndue to B. Briggs, which represents a \\\"curved version\\\" of a celebrated theorem\\nof Hopkins and Neeman. The proof of Briggs' Theorem is included in an appendix\\nto this paper.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们计算了在合适的弯曲环上的完全弯曲模块的微分等级范畴的霍赫希尔德同调,给出了这类模块的 "德拉姆模型"。这是对戴克霍夫、埃菲莫夫、波兰丘克和波西泽尔斯基以前关于矩阵因式分解的霍赫希尔德同调结果的推广。证明中的一个关键要素是布里格斯(B. Briggs)提出的一个定理,它是霍普金斯和尼曼著名定理的 "弯曲版本"。布里格斯定理的证明包含在本文的附录中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Hochschild Homology of Curved Algebras
We compute the Hochschild homology of the differential graded category of perfect curved modules over suitable curved rings, giving what might be termed "de Rham models" for such. This represents a generalization of previous results by Dyckerhoff, Efimov, Polishchuk, and Positselski concerning the Hochschild homology of matrix factorizations. A key ingredient in the proof is a theorem due to B. Briggs, which represents a "curved version" of a celebrated theorem of Hopkins and Neeman. The proof of Briggs' Theorem is included in an appendix to this paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信