通过无限根堆和贝林森纤维方阵实现对数 TC

Federico Binda, Tommy Lundemo, Alberto Merici, Doosung Park
{"title":"通过无限根堆和贝林森纤维方阵实现对数 TC","authors":"Federico Binda, Tommy Lundemo, Alberto Merici, Doosung Park","doi":"arxiv-2408.15627","DOIUrl":null,"url":null,"abstract":"We apply our previous results on ``saturated descent'' to express a wide\nrange of logarithmic cohomology theories in terms of the infinite root stack.\nExamples include the log cotangent complex, Rognes' log topological cyclic\nhomology, and Nygaard-complete log prismatic cohomology. As applications, we\nshow that the Nygaard-completion of the site-theoretic log prismatic cohomology\ncoincides with the definition arising from log ${\\rm TC}$, and we establish a\nlog version of the ${\\rm TC}$-variant of the Beilinson fiber square of\nAntieau--Mathew--Morrow--Nikolaus.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logarithmic TC via the Infinite Root Stack and the Beilinson Fiber Square\",\"authors\":\"Federico Binda, Tommy Lundemo, Alberto Merici, Doosung Park\",\"doi\":\"arxiv-2408.15627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We apply our previous results on ``saturated descent'' to express a wide\\nrange of logarithmic cohomology theories in terms of the infinite root stack.\\nExamples include the log cotangent complex, Rognes' log topological cyclic\\nhomology, and Nygaard-complete log prismatic cohomology. As applications, we\\nshow that the Nygaard-completion of the site-theoretic log prismatic cohomology\\ncoincides with the definition arising from log ${\\\\rm TC}$, and we establish a\\nlog version of the ${\\\\rm TC}$-variant of the Beilinson fiber square of\\nAntieau--Mathew--Morrow--Nikolaus.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将之前关于 "饱和后裔 "的结果应用于用无限根栈来表达更广泛的对数同调理论,例如对数余切复数、罗格内斯的对数拓扑回旋同调和奈加德完备的对数棱柱同调。作为应用,我们证明了现场理论对数棱柱同调的 Nygaard-completion与对数 ${\rm TC}$ 的定义相一致,并建立了安蒂奥--马修--莫罗--尼古拉斯的贝林森纤维平方的对数版本的 ${\rm TC}$ 变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Logarithmic TC via the Infinite Root Stack and the Beilinson Fiber Square
We apply our previous results on ``saturated descent'' to express a wide range of logarithmic cohomology theories in terms of the infinite root stack. Examples include the log cotangent complex, Rognes' log topological cyclic homology, and Nygaard-complete log prismatic cohomology. As applications, we show that the Nygaard-completion of the site-theoretic log prismatic cohomology coincides with the definition arising from log ${\rm TC}$, and we establish a log version of the ${\rm TC}$-variant of the Beilinson fiber square of Antieau--Mathew--Morrow--Nikolaus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信