通过规范的棱镜对数和棱镜霍赫希尔德同调

Zhouhang Mao
{"title":"通过规范的棱镜对数和棱镜霍赫希尔德同调","authors":"Zhouhang Mao","doi":"arxiv-2409.04400","DOIUrl":null,"url":null,"abstract":"In this brief note, we present an elementary construction of the first Chern\nclass of Hodge--Tate crystals in line bundles using a refinement of the\nprismatic logarithm, which should be comparable to the one considered by\nBhargav Bhatt. The key to constructing this refinement is Yuri Sulyma's norm on\n(animated) prisms. We explain the relation of this construction to prismatic\nWitt vectors, as a generalization of Kaledin's polynomial Witt vectors. We also\npropose the prismatic Hochschild homology as a noncommutative analogue of\nprismatic de Rham complex.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prismatic logarithm and prismatic Hochschild homology via norm\",\"authors\":\"Zhouhang Mao\",\"doi\":\"arxiv-2409.04400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this brief note, we present an elementary construction of the first Chern\\nclass of Hodge--Tate crystals in line bundles using a refinement of the\\nprismatic logarithm, which should be comparable to the one considered by\\nBhargav Bhatt. The key to constructing this refinement is Yuri Sulyma's norm on\\n(animated) prisms. We explain the relation of this construction to prismatic\\nWitt vectors, as a generalization of Kaledin's polynomial Witt vectors. We also\\npropose the prismatic Hochschild homology as a noncommutative analogue of\\nprismatic de Rham complex.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇短文中,我们利用棱镜对数的细化,提出了线束中霍奇--塔特晶体的第一个切恩类的基本构造,它应该可以与巴哈加夫-巴特(Bhargav Bhatt)所考虑的细化相媲美。构建这一细化的关键是尤里-苏里玛(Yuri Sulyma)关于(动画)棱镜的规范。我们解释了这一构造与棱柱维特向量的关系,它是卡列林多项式维特向量的一般化。我们还提出了棱镜霍赫希尔德同调,作为棱镜德拉姆复数的非交换类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prismatic logarithm and prismatic Hochschild homology via norm
In this brief note, we present an elementary construction of the first Chern class of Hodge--Tate crystals in line bundles using a refinement of the prismatic logarithm, which should be comparable to the one considered by Bhargav Bhatt. The key to constructing this refinement is Yuri Sulyma's norm on (animated) prisms. We explain the relation of this construction to prismatic Witt vectors, as a generalization of Kaledin's polynomial Witt vectors. We also propose the prismatic Hochschild homology as a noncommutative analogue of prismatic de Rham complex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信