细胞环束及相关空间的等变 $K$ 理论

V. Uma
{"title":"细胞环束及相关空间的等变 $K$ 理论","authors":"V. Uma","doi":"arxiv-2409.05719","DOIUrl":null,"url":null,"abstract":"In this article we describe the equivariant and ordinary topological $K$-ring\nof a toric bundle with fiber a $T$-{\\it cellular} toric variety. This\ngeneralizes the results in \\cite{su} on $K$-theory of smooth projective toric\nbundles. We apply our results to describe the equivariant topological $K$-ring\nof a toroidal horospherical embedding.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant $K$-theory of cellular toric bundles and related spaces\",\"authors\":\"V. Uma\",\"doi\":\"arxiv-2409.05719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we describe the equivariant and ordinary topological $K$-ring\\nof a toric bundle with fiber a $T$-{\\\\it cellular} toric variety. This\\ngeneralizes the results in \\\\cite{su} on $K$-theory of smooth projective toric\\nbundles. We apply our results to describe the equivariant topological $K$-ring\\nof a toroidal horospherical embedding.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们描述了纤维为$T$-{it cellular}环综的环束的等变与普通拓扑$K$环。这概括了《cite{su}》中关于光滑投影环束的 $K$ 理论的结果。我们应用我们的结果来描述环状角球嵌入的等变拓扑$K$环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivariant $K$-theory of cellular toric bundles and related spaces
In this article we describe the equivariant and ordinary topological $K$-ring of a toric bundle with fiber a $T$-{\it cellular} toric variety. This generalizes the results in \cite{su} on $K$-theory of smooth projective toric bundles. We apply our results to describe the equivariant topological $K$-ring of a toroidal horospherical embedding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信