等变维特复合物与扭曲拓扑霍赫希尔德同调

Anna Marie Bohmann, Teena Gerhardt, Cameron Krulewski, Sarah Petersen, Lucy Yang
{"title":"等变维特复合物与扭曲拓扑霍赫希尔德同调","authors":"Anna Marie Bohmann, Teena Gerhardt, Cameron Krulewski, Sarah Petersen, Lucy Yang","doi":"arxiv-2409.05965","DOIUrl":null,"url":null,"abstract":"The topological Hochschild homology of a ring (or ring spectrum) $R$ is an\n$S^1$-spectrum, and the fixed points of THH($R$) for subgroups $C_n\\subset S^1$\nhave been widely studied due to their use in algebraic K-theory computations.\nHesselholt and Madsen proved that the fixed points of topological Hochschild\nhomology are closely related to Witt vectors. Further, they defined the notion\nof a Witt complex, and showed that it captures the algebraic structure of the\nhomotopy groups of the fixed points of THH. Recent work of Angeltveit,\nBlumberg, Gerhardt, Hill, Lawson and Mandell defines a theory of twisted\ntopological Hochschild homology for equivariant rings (or ring spectra) that\nbuilds upon Hill, Hopkins and Ravenel's work on equivariant norms. In this\npaper, we study the algebraic structure of the equivariant homotopy groups of\ntwisted THH. In particular, we define an equivariant Witt complex and prove\nthat the equivariant homotopy of twisted THH has this structure. Our definition\nof equivariant Witt complexes contributes to a growing body of research in the\nsubject of equivariant algebra.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant Witt Complexes and Twisted Topological Hochschild Homology\",\"authors\":\"Anna Marie Bohmann, Teena Gerhardt, Cameron Krulewski, Sarah Petersen, Lucy Yang\",\"doi\":\"arxiv-2409.05965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The topological Hochschild homology of a ring (or ring spectrum) $R$ is an\\n$S^1$-spectrum, and the fixed points of THH($R$) for subgroups $C_n\\\\subset S^1$\\nhave been widely studied due to their use in algebraic K-theory computations.\\nHesselholt and Madsen proved that the fixed points of topological Hochschild\\nhomology are closely related to Witt vectors. Further, they defined the notion\\nof a Witt complex, and showed that it captures the algebraic structure of the\\nhomotopy groups of the fixed points of THH. Recent work of Angeltveit,\\nBlumberg, Gerhardt, Hill, Lawson and Mandell defines a theory of twisted\\ntopological Hochschild homology for equivariant rings (or ring spectra) that\\nbuilds upon Hill, Hopkins and Ravenel's work on equivariant norms. In this\\npaper, we study the algebraic structure of the equivariant homotopy groups of\\ntwisted THH. In particular, we define an equivariant Witt complex and prove\\nthat the equivariant homotopy of twisted THH has this structure. Our definition\\nof equivariant Witt complexes contributes to a growing body of research in the\\nsubject of equivariant algebra.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

环(或环谱)$R$的拓扑霍赫希尔德同调是一个$S^1$谱,而子群$C_n/子集S^1$的THH($R$)定点因其在代数K理论计算中的应用而被广泛研究。此外,他们还定义了维特复数的概念,并证明维特复数捕捉了拓扑霍赫定点群的代数结构。安格尔特维特、布伦伯格、格哈特、希尔、劳森和曼德尔的最新工作定义了等变环(或环谱)的扭曲拓扑霍赫希尔德同调理论,该理论建立在希尔、霍普金斯和雷文尔的等变规范工作之上。在本文中,我们研究了扭曲 THH 的等变同调群的代数结构。特别是,我们定义了等变维特复数,并证明了扭曲 THH 的等变同调具有这种结构。我们对等变维特复群的定义,为等变代数课题中越来越多的研究做出了贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equivariant Witt Complexes and Twisted Topological Hochschild Homology
The topological Hochschild homology of a ring (or ring spectrum) $R$ is an $S^1$-spectrum, and the fixed points of THH($R$) for subgroups $C_n\subset S^1$ have been widely studied due to their use in algebraic K-theory computations. Hesselholt and Madsen proved that the fixed points of topological Hochschild homology are closely related to Witt vectors. Further, they defined the notion of a Witt complex, and showed that it captures the algebraic structure of the homotopy groups of the fixed points of THH. Recent work of Angeltveit, Blumberg, Gerhardt, Hill, Lawson and Mandell defines a theory of twisted topological Hochschild homology for equivariant rings (or ring spectra) that builds upon Hill, Hopkins and Ravenel's work on equivariant norms. In this paper, we study the algebraic structure of the equivariant homotopy groups of twisted THH. In particular, we define an equivariant Witt complex and prove that the equivariant homotopy of twisted THH has this structure. Our definition of equivariant Witt complexes contributes to a growing body of research in the subject of equivariant algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信