RGDA-DDI:基于残差图注意力网络和双重注意力的药物相互作用预测框架

Changjian Zhou, Xin Zhang, Jiafeng Li, Jia Song, Wensheng Xiang
{"title":"RGDA-DDI:基于残差图注意力网络和双重注意力的药物相互作用预测框架","authors":"Changjian Zhou, Xin Zhang, Jiafeng Li, Jia Song, Wensheng Xiang","doi":"arxiv-2408.15310","DOIUrl":null,"url":null,"abstract":"Recent studies suggest that drug-drug interaction (DDI) prediction via\ncomputational approaches has significant importance for understanding the\nfunctions and co-prescriptions of multiple drugs. However, the existing silico\nDDI prediction methods either ignore the potential interactions among drug-drug\npairs (DDPs), or fail to explicitly model and fuse the multi-scale drug feature\nrepresentations for better prediction. In this study, we propose RGDA-DDI, a\nresidual graph attention network (residual-GAT) and dual-attention based\nframework for drug-drug interaction prediction. A residual-GAT module is\nintroduced to simultaneously learn multi-scale feature representations from\ndrugs and DDPs. In addition, a dual-attention based feature fusion block is\nconstructed to learn local joint interaction representations. A series of\nevaluation metrics demonstrate that the RGDA-DDI significantly improved DDI\nprediction performance on two public benchmark datasets, which provides a new\ninsight into drug development.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"406 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RGDA-DDI: Residual graph attention network and dual-attention based framework for drug-drug interaction prediction\",\"authors\":\"Changjian Zhou, Xin Zhang, Jiafeng Li, Jia Song, Wensheng Xiang\",\"doi\":\"arxiv-2408.15310\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent studies suggest that drug-drug interaction (DDI) prediction via\\ncomputational approaches has significant importance for understanding the\\nfunctions and co-prescriptions of multiple drugs. However, the existing silico\\nDDI prediction methods either ignore the potential interactions among drug-drug\\npairs (DDPs), or fail to explicitly model and fuse the multi-scale drug feature\\nrepresentations for better prediction. In this study, we propose RGDA-DDI, a\\nresidual graph attention network (residual-GAT) and dual-attention based\\nframework for drug-drug interaction prediction. A residual-GAT module is\\nintroduced to simultaneously learn multi-scale feature representations from\\ndrugs and DDPs. In addition, a dual-attention based feature fusion block is\\nconstructed to learn local joint interaction representations. A series of\\nevaluation metrics demonstrate that the RGDA-DDI significantly improved DDI\\nprediction performance on two public benchmark datasets, which provides a new\\ninsight into drug development.\",\"PeriodicalId\":501325,\"journal\":{\"name\":\"arXiv - QuanBio - Molecular Networks\",\"volume\":\"406 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Molecular Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15310\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15310","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,利用计算方法进行药物相互作用(DDI)预测对于了解多种药物的功能和共同处方具有重要意义。然而,现有的硅学 DDI 预测方法要么忽略了药物对(DDPs)之间的潜在相互作用,要么未能明确建模和融合多尺度药物特征表征以进行更好的预测。在这项研究中,我们提出了基于残差图注意网络(residual-GAT)和双重注意的药物相互作用预测框架 RGDA-DDI。我们引入了残差-GAT 模块,以同时学习药物和 DDP 的多尺度特征表征。此外,还构建了一个基于双注意的特征融合模块,以学习局部联合相互作用表征。一系列评估指标表明,RGDA-DDI 在两个公共基准数据集上显著提高了 DDI 预测性能,为药物开发提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RGDA-DDI: Residual graph attention network and dual-attention based framework for drug-drug interaction prediction
Recent studies suggest that drug-drug interaction (DDI) prediction via computational approaches has significant importance for understanding the functions and co-prescriptions of multiple drugs. However, the existing silico DDI prediction methods either ignore the potential interactions among drug-drug pairs (DDPs), or fail to explicitly model and fuse the multi-scale drug feature representations for better prediction. In this study, we propose RGDA-DDI, a residual graph attention network (residual-GAT) and dual-attention based framework for drug-drug interaction prediction. A residual-GAT module is introduced to simultaneously learn multi-scale feature representations from drugs and DDPs. In addition, a dual-attention based feature fusion block is constructed to learn local joint interaction representations. A series of evaluation metrics demonstrate that the RGDA-DDI significantly improved DDI prediction performance on two public benchmark datasets, which provides a new insight into drug development.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信