利用路径权重采样精确计算转移熵

Avishek Das, Pieter Rein ten Wolde
{"title":"利用路径权重采样精确计算转移熵","authors":"Avishek Das, Pieter Rein ten Wolde","doi":"arxiv-2409.01650","DOIUrl":null,"url":null,"abstract":"Information processing in networks entails a dynamical transfer of\ninformation between stochastic variables. Transfer entropy is widely used for\nquantification of the directional transfer of information between input and\noutput trajectories. However, currently there is no exact technique to quantify\ntransfer entropy given the dynamical model of a general network. Here we\nintroduce an exact computational algorithm, Transfer Entropy-Path Weight\nSampling (TE-PWS), to quantify transfer entropy and its variants in an\narbitrary network in the presence of multiple hidden variables, nonlinearity,\ntransient conditions, and feedback. TE-PWS extends a recently introduced\nalgorithm Path Weight Sampling (PWS) and uses techniques from the statistical\nphysics of polymers and trajectory sampling. We apply TE-PWS to linear and\nnonlinear systems to reveal how transfer entropy can overcome naive\napplications of data processing inequalities in presence of feedback.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact computation of Transfer Entropy with Path Weight Sampling\",\"authors\":\"Avishek Das, Pieter Rein ten Wolde\",\"doi\":\"arxiv-2409.01650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information processing in networks entails a dynamical transfer of\\ninformation between stochastic variables. Transfer entropy is widely used for\\nquantification of the directional transfer of information between input and\\noutput trajectories. However, currently there is no exact technique to quantify\\ntransfer entropy given the dynamical model of a general network. Here we\\nintroduce an exact computational algorithm, Transfer Entropy-Path Weight\\nSampling (TE-PWS), to quantify transfer entropy and its variants in an\\narbitrary network in the presence of multiple hidden variables, nonlinearity,\\ntransient conditions, and feedback. TE-PWS extends a recently introduced\\nalgorithm Path Weight Sampling (PWS) and uses techniques from the statistical\\nphysics of polymers and trajectory sampling. We apply TE-PWS to linear and\\nnonlinear systems to reveal how transfer entropy can overcome naive\\napplications of data processing inequalities in presence of feedback.\",\"PeriodicalId\":501325,\"journal\":{\"name\":\"arXiv - QuanBio - Molecular Networks\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Molecular Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络中的信息处理需要随机变量之间的动态信息传递。转移熵被广泛用于量化输入和输出轨迹之间的定向信息转移。然而,目前还没有精确的技术来量化一般网络动态模型中的转移熵。在这里,我们引入了一种精确的计算算法--转移熵-路径权重采样(TE-PWS),在存在多个隐变量、非线性、瞬态条件和反馈的情况下,量化任意网络中的转移熵及其变体。TE-PWS 扩展了最近推出的算法路径权重采样(PWS),并使用了聚合物统计物理学和轨迹采样技术。我们将 TE-PWS 应用于线性和非线性系统,揭示了在存在反馈的情况下,传递熵如何克服数据处理不等式的天真应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exact computation of Transfer Entropy with Path Weight Sampling
Information processing in networks entails a dynamical transfer of information between stochastic variables. Transfer entropy is widely used for quantification of the directional transfer of information between input and output trajectories. However, currently there is no exact technique to quantify transfer entropy given the dynamical model of a general network. Here we introduce an exact computational algorithm, Transfer Entropy-Path Weight Sampling (TE-PWS), to quantify transfer entropy and its variants in an arbitrary network in the presence of multiple hidden variables, nonlinearity, transient conditions, and feedback. TE-PWS extends a recently introduced algorithm Path Weight Sampling (PWS) and uses techniques from the statistical physics of polymers and trajectory sampling. We apply TE-PWS to linear and nonlinear systems to reveal how transfer entropy can overcome naive applications of data processing inequalities in presence of feedback.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信