{"title":"随机广义营养物-浮游植物-浮游动物模型的渐近行为","authors":"Peng Li, Xiaofeng Zhang, Rong Yuan","doi":"10.1007/s00332-024-10070-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the stochastic nutrient–phytoplankton–zooplankton model with nutrient cycle. In order to take stochastic fluctuations into account, we add the stochastic increments to the variations of biomass of nutrition, phytoplankton and zooplankton during time interval <span>\\(\\Delta t\\)</span>, thus we obtain the corresponding stochastic model. Subsequently, we explore the existence, uniqueness and stochastically ultimate boundness of global positive solution. By constructing suitable Lyapunov function, we also obtain <i>V</i>-geometric ergodicity of this model. In addition, the sufficient conditions of exponential extinction and persistence in the mean of plankton are established. At last, we present some numerical simulations to validate theoretical results and analyze the impacts of some important parameters.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Behavior of a Stochastic Generalized Nutrient–Phytoplankton–Zooplankton Model\",\"authors\":\"Peng Li, Xiaofeng Zhang, Rong Yuan\",\"doi\":\"10.1007/s00332-024-10070-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the stochastic nutrient–phytoplankton–zooplankton model with nutrient cycle. In order to take stochastic fluctuations into account, we add the stochastic increments to the variations of biomass of nutrition, phytoplankton and zooplankton during time interval <span>\\\\(\\\\Delta t\\\\)</span>, thus we obtain the corresponding stochastic model. Subsequently, we explore the existence, uniqueness and stochastically ultimate boundness of global positive solution. By constructing suitable Lyapunov function, we also obtain <i>V</i>-geometric ergodicity of this model. In addition, the sufficient conditions of exponential extinction and persistence in the mean of plankton are established. At last, we present some numerical simulations to validate theoretical results and analyze the impacts of some important parameters.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10070-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10070-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
本文考虑了具有营养循环的随机营养-浮游植物-浮游动物模型。为了将随机波动考虑在内,我们在营养、浮游植物和浮游动物生物量变化的时间间隔(\△t\)内加入随机增量,从而得到相应的随机模型。随后,我们探讨了全局正解的存在性、唯一性和随机终极约束性。通过构造合适的 Lyapunov 函数,我们还得到了该模型的 V 几何遍历性。此外,我们还建立了指数消亡和浮游生物均值持久性的充分条件。最后,我们给出了一些数值模拟来验证理论结果,并分析了一些重要参数的影响。
Asymptotic Behavior of a Stochastic Generalized Nutrient–Phytoplankton–Zooplankton Model
In this paper, we consider the stochastic nutrient–phytoplankton–zooplankton model with nutrient cycle. In order to take stochastic fluctuations into account, we add the stochastic increments to the variations of biomass of nutrition, phytoplankton and zooplankton during time interval \(\Delta t\), thus we obtain the corresponding stochastic model. Subsequently, we explore the existence, uniqueness and stochastically ultimate boundness of global positive solution. By constructing suitable Lyapunov function, we also obtain V-geometric ergodicity of this model. In addition, the sufficient conditions of exponential extinction and persistence in the mean of plankton are established. At last, we present some numerical simulations to validate theoretical results and analyze the impacts of some important parameters.