Stefan Krömer, Martin Kružík, Marco Morandotti, Elvira Zappale
{"title":"量值结构变形","authors":"Stefan Krömer, Martin Kružík, Marco Morandotti, Elvira Zappale","doi":"10.1007/s00332-024-10076-w","DOIUrl":null,"url":null,"abstract":"<p>Measure-valued structured deformations are introduced to present a unified theory of deformations of continua. The energy associated with a measure-valued structured deformation is defined via relaxation departing either from energies associated with classical deformations or from energies associated with structured deformations. A concise integral representation of the energy functional is provided both in the unconstrained case and under Dirichlet conditions on a part of the boundary.\n</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"20 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measure-Valued Structured Deformations\",\"authors\":\"Stefan Krömer, Martin Kružík, Marco Morandotti, Elvira Zappale\",\"doi\":\"10.1007/s00332-024-10076-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Measure-valued structured deformations are introduced to present a unified theory of deformations of continua. The energy associated with a measure-valued structured deformation is defined via relaxation departing either from energies associated with classical deformations or from energies associated with structured deformations. A concise integral representation of the energy functional is provided both in the unconstrained case and under Dirichlet conditions on a part of the boundary.\\n</p>\",\"PeriodicalId\":50111,\"journal\":{\"name\":\"Journal of Nonlinear Science\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10076-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10076-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Measure-valued structured deformations are introduced to present a unified theory of deformations of continua. The energy associated with a measure-valued structured deformation is defined via relaxation departing either from energies associated with classical deformations or from energies associated with structured deformations. A concise integral representation of the energy functional is provided both in the unconstrained case and under Dirichlet conditions on a part of the boundary.
期刊介绍:
The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be.
All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.