Stefan Krömer, Martin Kružík, Marco Morandotti, Elvira Zappale
{"title":"量值结构变形","authors":"Stefan Krömer, Martin Kružík, Marco Morandotti, Elvira Zappale","doi":"10.1007/s00332-024-10076-w","DOIUrl":null,"url":null,"abstract":"<p>Measure-valued structured deformations are introduced to present a unified theory of deformations of continua. The energy associated with a measure-valued structured deformation is defined via relaxation departing either from energies associated with classical deformations or from energies associated with structured deformations. A concise integral representation of the energy functional is provided both in the unconstrained case and under Dirichlet conditions on a part of the boundary.\n</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measure-Valued Structured Deformations\",\"authors\":\"Stefan Krömer, Martin Kružík, Marco Morandotti, Elvira Zappale\",\"doi\":\"10.1007/s00332-024-10076-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Measure-valued structured deformations are introduced to present a unified theory of deformations of continua. The energy associated with a measure-valued structured deformation is defined via relaxation departing either from energies associated with classical deformations or from energies associated with structured deformations. A concise integral representation of the energy functional is provided both in the unconstrained case and under Dirichlet conditions on a part of the boundary.\\n</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10076-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10076-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Measure-valued structured deformations are introduced to present a unified theory of deformations of continua. The energy associated with a measure-valued structured deformation is defined via relaxation departing either from energies associated with classical deformations or from energies associated with structured deformations. A concise integral representation of the energy functional is provided both in the unconstrained case and under Dirichlet conditions on a part of the boundary.