大规模行动网络中正均衡的一些界限

Murad Banaji
{"title":"大规模行动网络中正均衡的一些界限","authors":"Murad Banaji","doi":"arxiv-2409.06877","DOIUrl":null,"url":null,"abstract":"We present some results helpful for parameterising positive equilibria, and\nbounding the number of positive nondegenerate equilibria, in mass action\nnetworks. Any mass action network naturally gives rise to a set of polynomial\nequations whose positive solutions are precisely the positive equilibria of the\nnetwork. Here we derive alternative systems of equations, often also\npolynomial, whose solutions are in smooth, one-to-one correspondence with\npositive equilibria of the network. Often these alternative systems are simpler\nthan the original mass action equations, and allow us to infer useful bounds on\nthe number of positive equilibria. The alternative equation systems can also be\nhelpful for parameterising the equilibrium set explicitly, for deriving\ndescriptions of the parameter regions for multistationarity, and for studying\nbifurcations. We present the main construction, some bounds which follow for\nparticular classes of networks, numerous examples, and some open questions and\nconjectures.","PeriodicalId":501325,"journal":{"name":"arXiv - QuanBio - Molecular Networks","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some bounds on positive equilibria in mass action networks\",\"authors\":\"Murad Banaji\",\"doi\":\"arxiv-2409.06877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present some results helpful for parameterising positive equilibria, and\\nbounding the number of positive nondegenerate equilibria, in mass action\\nnetworks. Any mass action network naturally gives rise to a set of polynomial\\nequations whose positive solutions are precisely the positive equilibria of the\\nnetwork. Here we derive alternative systems of equations, often also\\npolynomial, whose solutions are in smooth, one-to-one correspondence with\\npositive equilibria of the network. Often these alternative systems are simpler\\nthan the original mass action equations, and allow us to infer useful bounds on\\nthe number of positive equilibria. The alternative equation systems can also be\\nhelpful for parameterising the equilibrium set explicitly, for deriving\\ndescriptions of the parameter regions for multistationarity, and for studying\\nbifurcations. We present the main construction, some bounds which follow for\\nparticular classes of networks, numerous examples, and some open questions and\\nconjectures.\",\"PeriodicalId\":501325,\"journal\":{\"name\":\"arXiv - QuanBio - Molecular Networks\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Molecular Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Molecular Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一些结果,这些结果有助于在质量作用网络中确定正均衡的参数,并限定正非孤立均衡的数量。任何质量作用网络都会自然产生一组多项式方程,其正解正是该网络的正均衡点。在此,我们推导出另一些方程组,通常也是多项式方程组,它们的解与网络的正均衡点平滑地一一对应。通常情况下,这些替代方程系统比原始的质量作用方程更简单,并允许我们推断正平衡点数量的有用边界。这些替代方程系统还有助于明确均衡集的参数,推导出多稳态参数区域的描述,以及研究分岔。我们介绍了主要构造、针对特定类别网络的一些约束、大量示例以及一些开放性问题和猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some bounds on positive equilibria in mass action networks
We present some results helpful for parameterising positive equilibria, and bounding the number of positive nondegenerate equilibria, in mass action networks. Any mass action network naturally gives rise to a set of polynomial equations whose positive solutions are precisely the positive equilibria of the network. Here we derive alternative systems of equations, often also polynomial, whose solutions are in smooth, one-to-one correspondence with positive equilibria of the network. Often these alternative systems are simpler than the original mass action equations, and allow us to infer useful bounds on the number of positive equilibria. The alternative equation systems can also be helpful for parameterising the equilibrium set explicitly, for deriving descriptions of the parameter regions for multistationarity, and for studying bifurcations. We present the main construction, some bounds which follow for particular classes of networks, numerous examples, and some open questions and conjectures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信