分数非线性薛定谔方程的孤波解:I-存在性与数值生成

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Angel Durán, Nuria Reguera
{"title":"分数非线性薛定谔方程的孤波解:I-存在性与数值生成","authors":"Angel Durán, Nuria Reguera","doi":"10.1007/s00332-024-10086-8","DOIUrl":null,"url":null,"abstract":"<p>The present paper is the first part of a project devoted to the fractional nonlinear Schrödinger (fNLS) equation. It is concerned with the existence and numerical generation of the solitary-wave solutions. For the first point, some conserved quantities of the problem are used to search for solitary-wave solutions from a constrained critical point problem and the application of the concentration-compactness theory. Several properties of the waves, such as the regularity and the asymptotic decay in some cases, are derived from the existence result. Some other properties, such as the monotone behavior and the speed-amplitude relation, will be explored computationally. To this end, a numerical procedure for the generation of the profiles is proposed. The method is based on a Fourier pseudospectral approximation of the differential system for the profiles and the use of Petviashvili’s iteration with extrapolation.\n</p>","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"10 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solitary-Wave Solutions of the Fractional Nonlinear Schrödinger Equation: I—Existence and Numerical Generation\",\"authors\":\"Angel Durán, Nuria Reguera\",\"doi\":\"10.1007/s00332-024-10086-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The present paper is the first part of a project devoted to the fractional nonlinear Schrödinger (fNLS) equation. It is concerned with the existence and numerical generation of the solitary-wave solutions. For the first point, some conserved quantities of the problem are used to search for solitary-wave solutions from a constrained critical point problem and the application of the concentration-compactness theory. Several properties of the waves, such as the regularity and the asymptotic decay in some cases, are derived from the existence result. Some other properties, such as the monotone behavior and the speed-amplitude relation, will be explored computationally. To this end, a numerical procedure for the generation of the profiles is proposed. The method is based on a Fourier pseudospectral approximation of the differential system for the profiles and the use of Petviashvili’s iteration with extrapolation.\\n</p>\",\"PeriodicalId\":50111,\"journal\":{\"name\":\"Journal of Nonlinear Science\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Science\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10086-8\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10086-8","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文是分数非线性薛定谔方程(fNLS)项目的第一部分。它关注孤波解的存在和数值生成。对于第一部分,问题的一些守恒量被用来从受约束临界点问题和集中-紧密性理论的应用中寻找孤波解。根据存在性结果推导出了孤波的一些性质,如规律性和某些情况下的渐近衰减。其他一些特性,如单调行为和速度-振幅关系,将通过计算来探索。为此,我们提出了一种生成剖面的数值程序。该方法基于轮廓微分系统的傅立叶伪谱近似和 Petviashvili 外推法迭代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Solitary-Wave Solutions of the Fractional Nonlinear Schrödinger Equation: I—Existence and Numerical Generation

Solitary-Wave Solutions of the Fractional Nonlinear Schrödinger Equation: I—Existence and Numerical Generation

The present paper is the first part of a project devoted to the fractional nonlinear Schrödinger (fNLS) equation. It is concerned with the existence and numerical generation of the solitary-wave solutions. For the first point, some conserved quantities of the problem are used to search for solitary-wave solutions from a constrained critical point problem and the application of the concentration-compactness theory. Several properties of the waves, such as the regularity and the asymptotic decay in some cases, are derived from the existence result. Some other properties, such as the monotone behavior and the speed-amplitude relation, will be explored computationally. To this end, a numerical procedure for the generation of the profiles is proposed. The method is based on a Fourier pseudospectral approximation of the differential system for the profiles and the use of Petviashvili’s iteration with extrapolation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.30%
发文量
87
审稿时长
4.5 months
期刊介绍: The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be. All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信