论算术级数中的拉马努扬展开和素数

IF 0.4 4区 数学 Q4 MATHEMATICS
Maurizio Laporta
{"title":"论算术级数中的拉马努扬展开和素数","authors":"Maurizio Laporta","doi":"10.1007/s12188-024-00282-4","DOIUrl":null,"url":null,"abstract":"<p>A celebrated theorem of Delange gives a sufficient condition for an arithmetic function to be the sum of the associated Ramanujan expansion with the coefficients provided by a previous result of Wintner. By applying the Delange theorem to the correlation of the von Mangoldt function with its incomplete form, we deduce an inequality involving the counting function of the prime numbers in arithmetic progressions. A remarkable aspect is that such an inequality is equivalent to the famous conjectural formula by Hardy and Littlewood for the twin primes.</p>","PeriodicalId":50932,"journal":{"name":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Ramanujan expansions and primes in arithmetic progressions\",\"authors\":\"Maurizio Laporta\",\"doi\":\"10.1007/s12188-024-00282-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A celebrated theorem of Delange gives a sufficient condition for an arithmetic function to be the sum of the associated Ramanujan expansion with the coefficients provided by a previous result of Wintner. By applying the Delange theorem to the correlation of the von Mangoldt function with its incomplete form, we deduce an inequality involving the counting function of the prime numbers in arithmetic progressions. A remarkable aspect is that such an inequality is equivalent to the famous conjectural formula by Hardy and Littlewood for the twin primes.</p>\",\"PeriodicalId\":50932,\"journal\":{\"name\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12188-024-00282-4\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12188-024-00282-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

德朗日的一个著名定理给出了一个充分条件,即一个算术函数是相关的拉马努扬展开式与温特纳以前的一个结果所提供的系数之和。通过将德朗日定理应用于 von Mangoldt 函数与其不完全形式的相关性,我们推导出了一个涉及算术级数中素数计数函数的不等式。值得注意的是,这个不等式等价于哈代和利特尔伍德关于孪生素数的著名猜想公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Ramanujan expansions and primes in arithmetic progressions

A celebrated theorem of Delange gives a sufficient condition for an arithmetic function to be the sum of the associated Ramanujan expansion with the coefficients provided by a previous result of Wintner. By applying the Delange theorem to the correlation of the von Mangoldt function with its incomplete form, we deduce an inequality involving the counting function of the prime numbers in arithmetic progressions. A remarkable aspect is that such an inequality is equivalent to the famous conjectural formula by Hardy and Littlewood for the twin primes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: The first issue of the "Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg" was published in the year 1921. This international mathematical journal has since then provided a forum for significant research contributions. The journal covers all central areas of pure mathematics, such as algebra, complex analysis and geometry, differential geometry and global analysis, graph theory and discrete mathematics, Lie theory, number theory, and algebraic topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信