热处理后机械合金化制备的 NiAl-TiB2 纳米复合材料的显微结构演变和力学性能

IF 1.6 4区 材料科学 Q2 Materials Science
A. Kaikhosravi, Z. Sadeghian, M. Tayebi
{"title":"热处理后机械合金化制备的 NiAl-TiB2 纳米复合材料的显微结构演变和力学性能","authors":"A. Kaikhosravi, Z. Sadeghian, M. Tayebi","doi":"10.1007/s12666-024-03426-5","DOIUrl":null,"url":null,"abstract":"<p>In the current study, NiAl–TiB<sub>2</sub> nanocomposite was produced by mechanical alloying and subsequent heat treatment. For this purpose, mixtures of pure Ni, Al, Ti, and B powders were milled in a ball mill for 20 h to produce NiAl-TiB<sub>2</sub> nanocomposites containing 10, 20, and 30 at% TiB<sub>2</sub>. The heat treatment temperature was selected at 850 °C for 30 min which was determined by differential thermal analysis. X-ray diffractometer (XRD) was used to identify the existing phases. The XRD results showed the completion of alloying after heat treatment. Furthermore, the morphology of the powders and microstructure of the sintered samples were investigated by optical microscopy and field emission scanning electron microscopy. Results showed that the NiAl-20% TiB<sub>2</sub> sample had the most homogeneous morphology. Then the powder mixture was hot pressed at 800 °C under 300 MPa. The density of the sample reached 95% after hot pressing. The sample containing 20% TiB<sub>2</sub> was subjected to wear test under 5, 7, 10, and 13N loads by pin on disk method. Examination of the morphology of the worn surface and wear debris showed that spalling was the dominant wear mechanism.</p>","PeriodicalId":23224,"journal":{"name":"Transactions of The Indian Institute of Metals","volume":"67 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure Evolution and Mechanical Properties of NiAl-TiB2 Nanocomposite Produced by Heat Treatment Post Mechanical Alloying\",\"authors\":\"A. Kaikhosravi, Z. Sadeghian, M. Tayebi\",\"doi\":\"10.1007/s12666-024-03426-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the current study, NiAl–TiB<sub>2</sub> nanocomposite was produced by mechanical alloying and subsequent heat treatment. For this purpose, mixtures of pure Ni, Al, Ti, and B powders were milled in a ball mill for 20 h to produce NiAl-TiB<sub>2</sub> nanocomposites containing 10, 20, and 30 at% TiB<sub>2</sub>. The heat treatment temperature was selected at 850 °C for 30 min which was determined by differential thermal analysis. X-ray diffractometer (XRD) was used to identify the existing phases. The XRD results showed the completion of alloying after heat treatment. Furthermore, the morphology of the powders and microstructure of the sintered samples were investigated by optical microscopy and field emission scanning electron microscopy. Results showed that the NiAl-20% TiB<sub>2</sub> sample had the most homogeneous morphology. Then the powder mixture was hot pressed at 800 °C under 300 MPa. The density of the sample reached 95% after hot pressing. The sample containing 20% TiB<sub>2</sub> was subjected to wear test under 5, 7, 10, and 13N loads by pin on disk method. Examination of the morphology of the worn surface and wear debris showed that spalling was the dominant wear mechanism.</p>\",\"PeriodicalId\":23224,\"journal\":{\"name\":\"Transactions of The Indian Institute of Metals\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Indian Institute of Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12666-024-03426-5\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Indian Institute of Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12666-024-03426-5","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,通过机械合金化和随后的热处理制备了 NiAl-TiB2 纳米复合材料。为此,将纯 Ni、Al、Ti 和 B 的混合物粉末在球磨机中研磨 20 小时,制备出含 10%、20% 和 30% TiB2 的 NiAl-TiB2 纳米复合材料。热处理温度选择在 850 ℃,持续 30 分钟,这是由差热分析确定的。X 射线衍射仪(XRD)用于识别现有的相。XRD 结果表明,热处理后合金化已经完成。此外,还用光学显微镜和场发射扫描电子显微镜研究了粉末的形态和烧结样品的微观结构。结果表明,NiAl-20% TiB2 样品的形态最为均匀。然后,在 800 ℃、300 兆帕下对粉末混合物进行热压。热压后,样品的密度达到 95%。含 20% TiB2 的样品在 5、7、10 和 13N 负载下通过针盘法进行了磨损测试。对磨损表面和磨损碎片形态的检查表明,剥落是主要的磨损机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Microstructure Evolution and Mechanical Properties of NiAl-TiB2 Nanocomposite Produced by Heat Treatment Post Mechanical Alloying

Microstructure Evolution and Mechanical Properties of NiAl-TiB2 Nanocomposite Produced by Heat Treatment Post Mechanical Alloying

In the current study, NiAl–TiB2 nanocomposite was produced by mechanical alloying and subsequent heat treatment. For this purpose, mixtures of pure Ni, Al, Ti, and B powders were milled in a ball mill for 20 h to produce NiAl-TiB2 nanocomposites containing 10, 20, and 30 at% TiB2. The heat treatment temperature was selected at 850 °C for 30 min which was determined by differential thermal analysis. X-ray diffractometer (XRD) was used to identify the existing phases. The XRD results showed the completion of alloying after heat treatment. Furthermore, the morphology of the powders and microstructure of the sintered samples were investigated by optical microscopy and field emission scanning electron microscopy. Results showed that the NiAl-20% TiB2 sample had the most homogeneous morphology. Then the powder mixture was hot pressed at 800 °C under 300 MPa. The density of the sample reached 95% after hot pressing. The sample containing 20% TiB2 was subjected to wear test under 5, 7, 10, and 13N loads by pin on disk method. Examination of the morphology of the worn surface and wear debris showed that spalling was the dominant wear mechanism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transactions of The Indian Institute of Metals
Transactions of The Indian Institute of Metals Materials Science-Metals and Alloys
CiteScore
2.60
自引率
6.20%
发文量
3
期刊介绍: Transactions of the Indian Institute of Metals publishes original research articles and reviews on ferrous and non-ferrous process metallurgy, structural and functional materials development, physical, chemical and mechanical metallurgy, welding science and technology, metal forming, particulate technologies, surface engineering, characterization of materials, thermodynamics and kinetics, materials modelling and other allied branches of Metallurgy and Materials Engineering. Transactions of the Indian Institute of Metals also serves as a forum for rapid publication of recent advances in all the branches of Metallurgy and Materials Engineering. The technical content of the journal is scrutinized by the Editorial Board composed of experts from various disciplines of Metallurgy and Materials Engineering. Editorial Advisory Board provides valuable advice on technical matters related to the publication of Transactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信